52 research outputs found

    Peroxisome proliferator-activated receptor delta limits the expansion of pathogenic Th cells during central nervous system autoimmunity.

    Get PDF
    Peroxisome proliferator-activated receptors (PPARs; PPAR-alpha, PPAR-delta, and PPAR-gamma) comprise a family of nuclear receptors that sense fatty acid levels and translate this information into altered gene transcription. Previously, it was reported that treatment of mice with a synthetic ligand activator of PPAR-delta, GW0742, ameliorates experimental autoimmune encephalomyelitis (EAE), indicating a possible role for this nuclear receptor in the control of central nervous system (CNS) autoimmune inflammation. We show that mice deficient in PPAR-delta (PPAR-delta(-/-)) develop a severe inflammatory response during EAE characterized by a striking accumulation of IFN-gamma(+)IL-17A(-) and IFN-gamma(+)IL-17A(+) CD4(+) cells in the spinal cord. The preferential expansion of these T helper subsets in the CNS of PPAR-delta(-/-) mice occurred as a result of a constellation of immune system aberrations that included higher CD4(+) cell proliferation, cytokine production, and T-bet expression and enhanced expression of IL-12 family cytokines by myeloid cells. We also show that the effect of PPAR-delta in inhibiting the production of IFN-gamma and IL-12 family cytokines is ligand dependent and is observed in both mouse and human immune cells. Collectively, these findings suggest that PPAR-delta serves as an important molecular brake for the control of autoimmune inflammation

    Longitudinal biomarkers in amyotrophic lateral sclerosis

    Get PDF
    OBJECTIVE: To investigate neurodegenerative and inflammatory biomarkers in people with amyotrophic lateral sclerosis (PALS), evaluate their predictive value for ALS progression rates, and assess their utility as pharmacodynamic biomarkers for monitoring treatment effects. METHODS: De-identified, longitudinal plasma, and cerebrospinal fluid (CSF) samples from PALS (n = 108; 85 with samples from \u3e /=2 visits) and controls without neurological disease (n = 41) were obtained from the Northeast ALS Consortium (NEALS) Biofluid Repository. Seventeen of 108 PALS had familial ALS, of whom 10 had C9orf72 mutations. Additional healthy control CSF samples (n = 35) were obtained from multiple sources. We stratified PALS into fast- and slow-progression subgroups using the ALS Functional Rating Scale-Revised change rate. We compared cytokines/chemokines and neurofilament (NF) levels between PALS and controls, among progression subgroups, and in those with C9orf72 mutations. RESULTS: We found significant elevations of cytokines, including MCP-1, IL-18, and neurofilaments (NFs), indicators of neurodegeneration, in PALS versus controls. Among PALS, these cytokines and NFs were significantly higher in fast-progression and C9orf72 mutation subgroups versus slow progressors. Analyte levels were generally stable over time, a key feature for monitoring treatment effects. We demonstrated that CSF/plasma neurofilament light chain (NFL) levels may predict disease progression, and stratification by NFL levels can enrich for more homogeneous patient groups. INTERPRETATION: Longitudinal stability of cytokines and NFs in PALS support their use for monitoring responses to immunomodulatory and neuroprotective treatments. NFs also have prognostic value for fast-progression patients and may be used to select similar patient subsets in clinical trials

    A TREM2-activating antibody with a blood-brain barrier transport vehicle enhances microglial metabolism in Alzheimer's disease models

    Get PDF
    van Lengerich et al. developed a human TREM2 antibody with a transport vehicle (ATV) that improves brain exposure and biodistribution in mouse models. ATV:TREM2 promotes microglial energetic capacity and metabolism via mitochondrial pathways. Loss-of-function variants of TREM2 are associated with increased risk of Alzheimer's disease (AD), suggesting that activation of this innate immune receptor may be a useful therapeutic strategy. Here we describe a high-affinity human TREM2-activating antibody engineered with a monovalent transferrin receptor (TfR) binding site, termed antibody transport vehicle (ATV), to facilitate blood-brain barrier transcytosis. Upon peripheral delivery in mice, ATV:TREM2 showed improved brain biodistribution and enhanced signaling compared to a standard anti-TREM2 antibody. In human induced pluripotent stem cell (iPSC)-derived microglia, ATV:TREM2 induced proliferation and improved mitochondrial metabolism. Single-cell RNA sequencing and morphometry revealed that ATV:TREM2 shifted microglia to metabolically responsive states, which were distinct from those induced by amyloid pathology. In an AD mouse model, ATV:TREM2 boosted brain microglial activity and glucose metabolism. Thus, ATV:TREM2 represents a promising approach to improve microglial function and treat brain hypometabolism found in patients with AD

    Population, Land Use and Deforestation in the Pan Amazon Basin: a Comparison of Brazil, Bolivia, Colombia, Ecuador, Perú and Venezuela

    Full text link
    This paper discusses the linkages between population change, land use, and deforestation in the Amazon regions of Brazil, Bolivia, Colombia, Ecuador, Perú, and Venezuela. We begin with a brief discussion of theories of population–environment linkages, and then focus on the case of deforestation in the PanAmazon. The core of the paper reviews available data on deforestation, population growth, migration and land use in order to see how well land cover change reflects demographic and agricultural change. The data indicate that population dynamics and net migration exhibit to deforestation in some states of the basin but not others. We then discuss other explanatory factors for deforestation, and find a close correspondence between land use and deforestation, which suggests that land use is loosely tied to demographic dynamics and mediates the influence of population on deforestation. We also consider national political economic contexts of Amazon change in the six countries, and find contrasting contexts, which also helps to explain the limited demographic-deforestation correspondence. The paper closes by noting general conclusions based on the data, topics in need of further research and recent policy proposals.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42720/1/10668_2003_Article_6977.pd

    Purification and Culture of Oligodendrocyte Lineage Cells

    No full text

    A novel purification method for CNS projection neurons leads to the identification of brain vascular cells as a source of trophic support for corticospinal motor neurons

    No full text
    One of the difficulties in studying cellular interactions in the CNS is the lack of effective methods to purify specific neuronal populations of interest. We report the development of a novel purification scheme, cholera toxin β (CTB) immunopanning, in which a particular CNS neuron population is selectively labeled via retrograde axonal transport of the cell-surface epitope CTB, and then purified via immobilization with anti-CTB antibody. We have demonstrated the usefulness and versatility of this method by purifying both retinal ganglion cells and corticospinal motor neurons (CSMNs). Genomic expression analyses of purified CSMNs revealed that they express significant levels of many receptors for growth factors produced by brain endothelial cells; three of these factors, CXCL12, pleiotrophin, and IGF2 significantly enhanced purified CSMN survival, similar to previously characterized CSMN trophic factors BDNF and IGF1. In addition, endothelial cell conditioned medium significantly promoted CSMN neurite outgrowth. These findings demonstrate a useful method for the purification of several different types of CNS projection neurons, which in principle should work in many mammalian species, and provide evidence that endothelial-derived factors may represent an overlooked source of trophic support for neurons in the brain.</p

    TFIIIC Binding Sites Function as both Heterochromatin Barriers and Chromatin Insulators in Saccharomyces cerevisiae▿

    Get PDF
    Chromosomal sites of RNA polymerase III (Pol III) transcription have been demonstrated to have “extratranscriptional” functions, as the assembled Pol III complex can act as chromatin boundaries or pause sites for replication forks, can alter nucleosome positioning or affect transcription of neighboring genes, and can play a role in sister chromatid cohesion. Several studies have demonstrated that assembled Pol III complexes block the propagation of heterochromatin-mediated gene repression. Here we show that in Saccharomyces cerevisiae tRNA genes (tDNAs) and even partially assembled Pol III complexes containing only the transcription factor TFIIIC can exhibit chromatin boundary functions both as heterochromatin barriers and as insulators to gene activation. Both the TRT2 tDNA and the ETC4 site which binds only the TFIIIC complex prevented an upstream activation sequence from activating the GAL promoters in our assay system, effectively acting as chromatin insulators. Additionally, when placed downstream from the heterochromatic HMR locus, ETC4 blocked the ectopic spread of Sir protein-mediated silencing, thus functioning as a barrier to repression. Finally, we show that TRT2 and the ETC6 site upstream of TFC6 in their natural contexts display potential insulator-like functions, and ETC6 may represent a novel case of a Pol III factor directly regulating a Pol II promoter. The results are discussed in the context of how the TFIIIC transcription factor complex may function to demarcate chromosomal domains in yeast and possibly in other eukaryotes

    MicroRNAs in Oligodendrocyte and Schwann Cell Differentiation

    No full text
    MicroRNAs (miRNAs) are a class of small (approx. 22 nt) noncoding RNAs that are capable of post-transcriptionally silencing mRNAs that contain sequences complementary to the miRNAs’ 7- to 8-bp ‘seed’ sequence. As single miRNAs are often predicted to target up to hundreds of individual transcripts, miRNAs are able to broadly affect the overall protein expression state of the cell. This can translate into global effects on cellular health and differentiation state. Recently, several reports have identified crucial roles for miRNAs in controlling the production, differentiation, and health of myelinating cells of the mammalian nervous system. In this review, we will discuss how individual miRNAs regulate these various processes, and also how miRNA production in general is required for several stages of myelin generation and maintenance
    corecore