130 research outputs found

    Competition for finite resources

    Full text link
    The resources in a cell are finite, which implies that the various components of the cell must compete for resources. One such resource is the ribosomes used during translation to create proteins. Motivated by this example, we explore this competition by connecting two totally asymmetric simple exclusion processes (TASEPs) to a finite pool of particles. Expanding on our previous work, we focus on the effects on the density and current of having different entry and exit rates.Comment: 15 pages, 9 figures, v2: minor revisions, v3: additional reference & minor correction

    Feedback and Fluctuations in a Totally Asymmetric Simple Exclusion Process with Finite Resources

    Full text link
    We revisit a totally asymmetric simple exclusion process (TASEP) with open boundaries and a global constraint on the total number of particles [Adams, et. al. 2008 J. Stat. Mech. P06009]. In this model, the entry rate of particles into the lattice depends on the number available in the reservoir. Thus, the total occupation on the lattice feeds back into its filling process. Although a simple domain wall theory provided reasonably good predictions for Monte Carlo simulation results for certain quantities, it did not account for the fluctuations of this feedback. We generalize the previous study and find dramatically improved predictions for, e.g., the density profile on the lattice and provide a better understanding of the phenomenon of "shock localization."Comment: 11 pages, 3 figures, v2: Minor change

    Power Spectra of a Constrained Totally Asymmetric Simple Exclusion Process

    Full text link
    To synthesize proteins in a cell, an mRNA has to work with a finite pool of ribosomes. When this constraint is included in the modeling by a totally asymmetric simple exclusion process (TASEP), non-trivial consequences emerge. Here, we consider its effects on the power spectrum of the total occupancy, through Monte Carlo simulations and analytical methods. New features, such as dramatic suppressions at low frequencies, are discovered. We formulate a theory based on a linearized Langevin equation with discrete space and time. The good agreement between its predictions and simulation results provides some insight into the effects of finite resoures on a TASEP.Comment: 4 pages, 2 figures v2: formatting change

    A beamforming video recorder for integrated observations of dolphin behavior and vocalizations

    Get PDF
    Author Posting. © Acoustical Society of America, 2005. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 117 (2005): 1005-1008, doi:10.1121/1.1831284.In this Letter we describe a beamforming video recorder consisting of a video camera at the center of a 16 hydrophone array. A broadband frequency-domain beamforming algorithm is used to estimate the azimuth and elevation of each detected sound. These estimates are used to generate a visual cue indicating the location of the sound source within the video recording, which is synchronized to the acoustic data. The system provided accurate results in both lab calibrations and a field test. The system allows researchers to correlate the acoustic and physical behaviors of marine mammals during studies of social interactions.This research was funded by NSF Ocean Sciences CAREER award 9733391

    Dynamical Transition in the Open-boundary Totally Asymmetric Exclusion Process

    Full text link
    We revisit the totally asymmetric simple exclusion process with open boundaries (TASEP), focussing on the recent discovery by de Gier and Essler that the model has a dynamical transition along a nontrivial line in the phase diagram. This line coincides neither with any change in the steady-state properties of the TASEP, nor the corresponding line predicted by domain wall theory. We provide numerical evidence that the TASEP indeed has a dynamical transition along the de Gier-Essler line, finding that the most convincing evidence was obtained from Density Matrix Renormalisation Group (DMRG) calculations. By contrast, we find that the dynamical transition is rather hard to see in direct Monte Carlo simulations of the TASEP. We furthermore discuss in general terms scenarios that admit a distinction between static and dynamic phase behaviour.Comment: 27 pages, 18 figures. v2 to appear in J Phys A features minor corrections and better-quality figure

    Basal cell carcinoma of the vulva: a case report and systematic review of the literature

    Full text link
    The vulva is an unusual site for basal cell carcinoma (BCC). Vulvar BCC accounts for <1% of all BCCs and <5% of all vulvar malignancies. We report the case of an 83 year‐old woman who presented with a 2‐month history of a tender labial growth, with histopathology confirming nodular BCC. We conducted a systematic literature review of the characteristics of reported cases of vulvar BCCs. A comprehensive systematic review of articles indexed for MEDLINE and Embase yielded 96 reports describing 437 patients with 446 BCCs of the vulva. The mean age at presentation was 70 (range 20–100). Most women had no underlying vulvar disease. Approximately 60% of cases were of the nodular subtype. Treatment approach varied widely with over half of cases treated with wide local or local excision. Mohs micrographic surgery (MMS) for vulvar BCC was first reported in 1988 with seven total MMS cases reported. Twenty‐three cases of recurrence have been reported; 21 of these cases after local excision but none following MMS. Vulvar BCC is a rarely reported cancer that affects older women predominantly. MMS represents a promising treatment for BCC in this anatomic location.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/150570/1/ijd14307.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/150570/2/ijd14307_am.pd

    Towards a New Paradigm of Non-Captive Research on Cetacean Cognition

    Get PDF
    Contemporary knowledge of impressive neurophysiology and behavior in cetaceans, combined with increasing opportunities for studying free-ranging cetaceans who initiate sociable interaction with humans, are converging to highlight serious ethical considerations and emerging opportunities for a new era of progressive and less-invasive cetacean research. Most research on cetacean cognition has taken place in controlled captive settings, e.g., research labs, marine parks. While these environments afford a certain amount of experimental rigor and logistical control they are fraught with limitations in external validity, impose tremendous stress on the part of the captive animals, and place burdens on populations from which they are often captured. Alternatively, over the past three decades, some researchers have sought to focus their attention on the presence of free-ranging cetacean individuals and groups who have initiated, or chosen to participate in, sociable interactions with humans in the wild. This new approach, defined as Interspecies Collaborative Research between cetacean and human, involves developing novel ways to address research questions under natural conditions and respecting the individual cetacean's autonomy. It also offers a range of potential direct benefits to the cetaceans studied, as well as allowing for unprecedented cognitive and psychological research on sociable mysticetes. Yet stringent precautions are warranted so as to not increase their vulnerability to human activities or pathogens. When conducted in its best and most responsible form, collaborative research with free-ranging cetaceans can deliver methodological innovation and invaluable new insights while not necessitating the ethical and scientific compromises that characterize research in captivity. Further, it is representative of a new epoch in science in which research is designed so that the participating cetaceans are the direct recipients of the benefits

    (704) Interamnia: a transitional object between a dwarf planet and a typical irregular-shaped minor body

    Get PDF
    Context. With an estimated diameter in the 320–350 km range, (704) Interamnia is the fifth largest main belt asteroid and one of the few bodies that fills the gap in size between the four largest bodies with D > 400 km (Ceres, Vesta, Pallas and Hygiea) and the numerous smaller bodies with diameter ≤200 km. However, despite its large size, little is known about the shape and spin state of Interamnia and, therefore, about its bulk composition and past collisional evolution. Aims. We aimed to test at what size and mass the shape of a small body departs from a nearly ellipsoidal equilibrium shape (as observed in the case of the four largest asteroids) to an irregular shape as routinely observed in the case of smaller (D ≤ 200 km) bodies. Methods. We observed Interamnia as part of our ESO VLT/SPHERE large program (ID: 199.C-0074) at thirteen different epochs. In addition, several new optical lightcurves were recorded. These data, along with stellar occultation data from the literature, were fed to the All-Data Asteroid Modeling algorithm to reconstruct the 3D-shape model of Interamnia and to determine its spin state. Results. Interamnia’s volume-equivalent diameter of 332 ± 6 km implies a bulk density of ρ = 1.98 ± 0.68 g cm−3, which suggests that Interamnia – like Ceres and Hygiea – contains a high fraction of water ice, consistent with the paucity of apparent craters. Our observations reveal a shape that can be well approximated by an ellipsoid, and that is compatible with a fluid hydrostatic equilibrium at the 2σ level. Conclusions. The rather regular shape of Interamnia implies that the size and mass limit, under which the shapes of minor bodies with a high amount of water ice in the subsurface become irregular, has to be searched among smaller (D ≤ 300 km) less massive (m ≤ 3 × 1019 kg) bodies

    Modeling Translation in Protein Synthesis with TASEP: A Tutorial and Recent Developments

    Full text link
    The phenomenon of protein synthesis has been modeled in terms of totally asymmetric simple exclusion processes (TASEP) since 1968. In this article, we provide a tutorial of the biological and mathematical aspects of this approach. We also summarize several new results, concerned with limited resources in the cell and simple estimates for the current (protein production rate) of a TASEP with inhomogeneous hopping rates, reflecting the characteristics of real genes.Comment: 25 pages, 7 figure
    corecore