321 research outputs found

    The specificity and patterns of staining in human cells and tissues of p16INK4a antibodies demonstrate variant antigen binding

    Get PDF
    The validity of the identification and classification of human cancer using antibodies to detect biomarker proteins depends upon antibody specificity. Antibodies that bind to the tumour-suppressor protein p16INK4a are widely used for cancer diagnosis and research. In this study we examined the specificity of four commercially available anti-p16INK4a antibodies in four immunological applications. The antibodies H-156 and JC8 detected the same 16 kDa protein in western blot and immunoprecipitation tests, whereas the antibody F-12 did not detect any protein in western blot analysis or capture a protein that could be recognised by the H-156 antibody. In immunocytochemistry tests, the antibodies JC8 and H-156 detected a predominately cytoplasmic localised antigen, whose signal was depleted in p16INK4a siRNA experiments. F-12, in contrast, detected a predominately nuclear located antigen and there was no noticeable reduction in this signal after siRNA knockdown. Furthermore in immunohistochemistry tests, F-12 generated a different pattern of staining compared to the JC8 and E6H4 antibodies. These results demonstrate that three out of four commercially available p16INK4a antibodies are specific to, and indicate a mainly cytoplasmic localisation for, the p16INK4a protein. The F-12 antibody, which has been widely used in previous studies, gave different results to the other antibodies and did not demonstrate specificity to human p16INK4a. This work emphasizes the importance of the validation of commercial antibodies, aside to the previously reported use, for the full verification of immunoreaction specificity

    Coherent master equation for laser modelocking

    Get PDF
    Modelocked lasers constitute the fundamental source of optically-coherent ultrashort-pulsed radiation, with huge impact in science and technology. Their modeling largely rests on the master equation (ME) approach introduced in 1975 by Hermann A. Haus. However, that description fails when the medium dynamics is fast and, ultimately, when light-matter quantum coherence is relevant. Here we set a rigorous and general ME framework, the coherent ME (CME), that overcomes both limitations. The CME predicts strong deviations from Haus ME, which we substantiate through an amplitude-modulated semiconductor laser experiment. Accounting for coherent effects, like the Risken-Nummedal-Graham-Haken multimode instability, we envisage the usefulness of the CME for describing self-modelocking and spontaneous frequency comb formation in quantum-cascade and quantum-dot lasers. Furthermore, the CME paves the way for exploiting the rich phenomenology of coherent effects in laser design, which has been hampered so far by the lack of a coherent ME formalism

    Alpha-particle-induced complex chromosome exchanges transmitted through extra-thymic lymphopoiesis in vitro show evidence of emerging genomic instability

    Get PDF
    Human exposure to high-linear energy transfer α-particles includes environmental (e.g. radon gas and its decay progeny), medical (e.g. radiopharmaceuticals) and occupational (nuclear industry) sources. The associated health risks of α-particle exposure for lung cancer are well documented however the risk estimates for leukaemia remain uncertain. To further our understanding of α-particle effects in target cells for leukaemogenesis and also to seek general markers of individual exposure to α-particles, this study assessed the transmission of chromosomal damage initially-induced in human haemopoietic stem and progenitor cells after exposure to high-LET α-particles. Cells surviving exposure were differentiated into mature T-cells by extra-thymic T-cell differentiation in vitro. Multiplex fluorescence in situ hybridisation (M-FISH) analysis of naïve T-cell populations showed the occurrence of stable (clonal) complex chromosome aberrations consistent with those that are characteristically induced in spherical cells by the traversal of a single α-particle track. Additionally, complex chromosome exchanges were observed in the progeny of irradiated mature T-cell populations. In addition to this, newly arising de novo chromosome aberrations were detected in cells which possessed clonal markers of α-particle exposure and also in cells which did not show any evidence of previous exposure, suggesting ongoing genomic instability in these populations. Our findings support the usefulness and reliability of employing complex chromosome exchanges as indicators of past or ongoing exposure to high-LET radiation and demonstrate the potential applicability to evaluate health risks associated with α-particle exposure.This work was supported by the Department of Health, UK. Contract RRX95 (RMA NSDTG)

    Stokes solitons in optical microcavities

    Get PDF
    Solitons are wave packets that resist dispersion through a self-induced potential well. They are studied in many fields, but are especially well known in optics on account of the relative ease of their formation and control in optical fibre waveguides. Besides their many interesting properties, solitons are important to optical continuum generation, in mode-locked lasers, and have been considered as a natural way to convey data over great distances. Recently, solitons have been realized in microcavities, thereby bringing the power of microfabrication methods to future applications. This work reports a soliton not previously observed in optical systems, the Stokes soliton. The Stokes soliton forms and regenerates by optimizing its Raman interaction in space and time within an optical potential well shared with another soliton. The Stokes and the initial soliton belong to distinct transverse mode families and benefit from a form of soliton trapping that is new to microcavities and soliton lasers in general. The discovery of a new optical soliton can impact work in other areas of photonics, including nonlinear optics and spectroscopy

    Antitumor activity from antigen-specific CD8 T cells generated in vivo from genetically engineered human hematopoietic stem cells

    Get PDF
    The goal of cancer immunotherapy is the generation of an effective, stable, and self-renewing antitumor T-cell population. One such approach involves the use of high-affinity cancer-specific T-cell receptors in gene-therapy protocols. Here, we present the generation of functional tumor-specific human T cells in vivo from genetically modified human hematopoietic stem cells (hHSC) using a human/mouse chimera model. Transduced hHSC expressing an HLA-A*0201–restricted melanoma-specific T-cell receptor were introduced into humanized mice, resulting in the generation of a sizeable melanoma-specific naïve CD8^+ T-cell population. Following tumor challenge, these transgenic CD8^+ T cells, in the absence of additional manipulation, limited and cleared human melanoma tumors in vivo. Furthermore, the genetically enhanced T cells underwent proper thymic selection, because we did not observe any responses against non–HLA-matched tumors, and no killing of any kind occurred in the absence of a human thymus. Finally, the transduced hHSC established long-term bone marrow engraftment. These studies present a potential therapeutic approach and an important tool to understand better and to optimize the human immune response to melanoma and, potentially, to other types of cancer

    Paced-Mating Increases the Number of Adult New Born Cells in the Internal Cellular (Granular) Layer of the Accessory Olfactory Bulb

    Get PDF
    The continuous production and addition of new neurons during life in the olfactory bulb is well accepted and has been extensively studied in rodents. This process could allow the animals to adapt to a changing environment. Olfactory neurogenesis begins in the subventricular zone where stem cells proliferate and give rise to young undifferentiated neuroblasts that migrate along the rostral migratory stream to the olfactory bulb (OB). Olfaction is crucial for the expression of sexual behavior in rodents. In female rats, the ability to control the rate of sexual interactions (pacing) has important physiological and behavioral consequences. In the present experiment we evaluated if pacing behavior modifies the rate of new cells that reach the main and accessory olfactory bulb. The BrdU marker was injected before and after different behavioral tests which included: females placed in a mating cage (control), females allowed to pace the sexual interaction, females that mated but were not able to control the rate of the sexual interaction and females exposed to a sexually active male. Subjects were sacrificed fifteen days after the behavioral test. We observed a significant increase in the density of BrdU positive cells in the internal cellular layer of the accessory olfactory bulb when females paced the sexual interaction in comparison to the other 3 groups. No differences in the cell density in the main olfactory bulb were found. These results suggest that pacing behavior promotes an increase in density of the new cells in the accessory olfactory bulb

    Disturbed Clockwork Resetting in Sharp-1 and Sharp-2 Single and Double Mutant Mice

    Get PDF
    BACKGROUND: The circadian system provides the basis to anticipate and cope with daily recurrent challenges to maintain the organisms' homeostasis. De-synchronization of circadian feedback oscillators in humans causes 'jet lag', likely contributes to sleep-, psychiatric-, metabolic disorders and even cancer. However, the molecular mechanisms leading to the disintegration of tissue-specific clocks are complex and not well understood. METHODOLOGY/PRINCIPAL FINDINGS: Based on their circadian expression and cell culture experiments, the basic Helix-Loop-Helix (bHLH) transcription factors SHARP-1(Dec2) and SHARP-2(Stra13/Dec1) were proposed as novel negative regulators of the molecular clock. To address their function in vivo, we generated Sharp-1 and Sharp-2 single and double mutant mice. Our experiments reveal critical roles for both factors in regulating period length, tissue-specific control of clock gene expression and entrainment to external cues. Light-pulse experiments and rapid delays of the light-dark cycle (experimental jet lag) unravel complementary functions for SHARP-1 and SHARP-2 in controlling activity phase resetting kinetics. Moreover, we show that SHARP-1 and 2 can serve dual functions as repressors and co-activators of mammalian clock gene expression in a context-specific manner. This correlates with increased amplitudes of Per2 expression in the cortex and liver and a decrease in the suprachiasmatic nucleus (SCN) of double mutant mice. CONCLUSIONS/SIGNIFICANCE: The existence of separate mechanisms regulating phase of entrainment, rhythm amplitude and period length has been postulated before. The differential effects of Sharp-deficiency on rhythmicity and behavioral re-entrainment, coupled to tissue-dependent regulatory functions, provide a new mechanistic basis to further understand the complex process of clock synchronizations

    The Reinforcing Therapist Performance (RTP) experiment: Study protocol for a cluster randomized trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rewarding provider performance has been recommended by the Institute of Medicine as an approach to improve the quality of treatment, yet little empirical research currently exists that has examined the effectiveness and cost-effectiveness of such approaches. The aim of this study is to test the effectiveness and cost-effectiveness of providing monetary incentives directly to therapists as a method to improve substance abuse treatment service delivery and subsequent client treatment outcomes.</p> <p>Design</p> <p>Using a cluster randomized design, substance abuse treatment therapists from across 29 sites were assigned by site to either an implementation as usual (IAU) or pay-for-performance (P4P) condition.</p> <p>Participants</p> <p>Substance abuse treatment therapists participating in a large dissemination and implementation initiative funded by the Center for Substance Abuse Treatment.</p> <p>Intervention</p> <p>Therapists in both conditions received comprehensive training and ongoing monitoring, coaching, and feedback. However, those in the P4P condition also were given the opportunity to earn monetary incentives for achieving two sets of measurable behaviors related to quality implementation of the treatment.</p> <p>Outcomes</p> <p>Effectiveness outcomes will focus on the impact of the monetary incentives to increase the proportion of adolescents who receive a targeted threshold level of treatment, months that therapists demonstrate monthly competency, and adolescents who are in recovery following treatment. Similarly, cost-effectiveness outcomes will focus on cost per adolescent receiving targeted threshold level of treatment, cost per month of demonstrated competence, and cost per adolescent in recovery.</p> <p>Trial Registration</p> <p>Trial Registration Number: NCT01016704</p

    High power Q-switched thulium doped fibre laser using carbon nanotube polymer composite saturable absorber

    Get PDF
    We have proposed and demonstrated a Q-switched Thulium doped bre laser (TDFL) with a ‘Yin-Yang’ all- bre cavity scheme based on a combination of nonlinear optical loop mirror (NOLM) and nonlinear ampli ed loop mirror (NALM). Unidirectional lasing operation has been achieved without any intracavity isolator. By using a carbon nanotube polymer composite based saturable absorber (SA), we demonstrated the laser output power of ~197 mW and pulse energy of 1.7 μJ. To the best of our knowledge, this is the highest output power from a nanotube polymer composite SA based Q-switched Thulium doped bre laser

    NYESO-1/LAGE-1s and PRAME Are Targets for Antigen Specific T Cells in Chondrosarcoma following Treatment with 5-Aza-2-Deoxycitabine

    Get PDF
    Chondrosarcoma has no proven systemic option in the metastatic setting. The development of a non-cross-resistant strategy, such as cellular immunotherapy using antigen-specific T cells would be highly desirable. NY-ESO-1 and PRAME are members of the Cancer Testis Antigen (CTA) family that have been identified as promising targets for T cell therapy. LAGE-1 is a cancer testis antigen 90% homologous to NY-ESO-1, sharing the 157-165 A*0201 NY-ESO-1 epitope with its transcript variant, LAGE-1s. A number of CTA's have been induced using 5-Aza-2-Deoxycitabine (5-Aza-dC) in other cancers. We sought to evaluate the feasibility of targeting chondrosarcoma tumors using NY-ESO-1/LAGE-1s and PRAME specific T cells using 5-Aza-dC to induce antigen expression.We used 11 flash frozen tumors from the University of Washington tumor bank to test for the expression of NY-ESO-1, PRAME, LAGE-1s and LAGE-1L in chondrosarcoma tumors. Using four chondrosarcoma cell lines we tested the expression of these CTA's with and without 5-Aza-dC treatments. Finally, using NY-ESO-1/LAGE-1s and PRAME specific effectors that we generated from sarcoma patients, we evaluated the ability of these T cells to lyse A*0201 expressing chondrosarcoma cell lines in vitro both with and without 5-Aza-dC treatment.A minority (36%) of chondrosarcoma tumors expressed either NY-ESO-1 or LAGE-1s at >10% of our reference value and none expressed PRAME at that level. However, in all four of the chondrosarcoma cell lines tested, NY-ESO-1 and PRAME expression could be induced following treatment with 5-Aza-dC including in cell lines where expression was absent or barely detectable. Furthermore, NY-ESO-1/LAGE-1s and PRAME specific CD8+ effector T cells were able to specifically recognize and lyse A*0201 expressing chondrosarcoma cell lines following 5-Aza-dC treatment.These data suggest that adoptive immunotherapy in combination with 5-Aza-dC may be a potential strategy to treat unresectable or metastatic chondrosarcoma patients where no proven systemic therapies exist
    corecore