354 research outputs found

    Vascular hyporesponsiveness to vasopressors in septic shock: from bench to bedside

    Get PDF
    PurposeTo delineate some of the characteristics of septic vascular hypotension, to assess the most commonly cited and reported underlying mechanisms of vascular hyporesponsiveness to vasoconstrictors in sepsis, and to briefly outline current therapeutic strategies and possible future approaches. Methods Source data were obtained from a PubMed search of the medical literature with the following MeSH terms: Muscle, smooth, vascular/physiopathology; hypotension/etiology; shock/physiopathology; vasodilation/physiology; shock/therapy; vasoconstrictor agents. Results Nitric oxide (NO) and peroxynitrite are crucial components implicated in vasoplegia and vascular hyporeactivity. Vascular ATP-sensitive and calcium-activated potassium channels are activated during shock and participate in hypotension. In addition, shock state is characterized by inappropriately low plasma glucocorticoid and vasopressin concentrations, a dysfunction and desensitization of alpha-receptors, and an inactivation of catecholamines by oxidation. Numerous other mechanisms have been individualized in animal models, the great majority of which involve NO: MEK1/2–ERK1/2 pathway, H2S, hyperglycemia, and cytoskeleton dysregulation associated with decreased actin expression. Conclusions Many therapeutic approaches have proven their efficiency in animal models, especially therapies directed against one particular compound, but have otherwise failed when used in human shock. Nevertheless, high doses of catecholamines, vasopressin and terlipressin, hydrocortisone, activated protein C, and non-specific shock treatment have demonstrated a partial efficiency in reversing sepsis-induced hypotension

    Carcass conformation and fat cover scores in beef cattle: A comparison of threshold linear models vs grouped data models

    Get PDF
    Background: Beef carcass conformation and fat cover scores are measured by subjective grading performed by trained technicians. The discrete nature of these scores is taken into account in genetic evaluations using a threshold model, which assumes an underlying continuous distribution called liability that can be modelled by different methods. Methods: Five threshold models were compared in this study: three threshold linear models, one including slaughterhouse and sex effects, along with other systematic effects, with homogeneous thresholds and two extensions with heterogeneous thresholds that vary across slaughterhouses and across slaughterhouse and sex and a generalised linear model with reverse extreme value errors. For this last model, the underlying variable followed a Weibull distribution and was both a log-linear model and a grouped data model. The fifth model was an extension of grouped data models with score-dependent effects in order to allow for heterogeneous thresholds that vary across slaughterhouse and sex. Goodness-of-fit of these models was tested using the bootstrap methodology. Field data included 2,539 carcasses of the Bruna dels Pirineus beef cattle breed. Results: Differences in carcass conformation and fat cover scores among slaughterhouses could not be totally captured by a systematic slaughterhouse effect, as fitted in the threshold linear model with homogeneous thresholds, and different thresholds per slaughterhouse were estimated using a slaughterhouse-specific threshold model. This model fixed most of the deficiencies when stratification by slaughterhouse was done, but it still failed to correctly fit frequencies stratified by sex, especially for fat cover, as 5 of the 8 current percentages were not included within the bootstrap interval. This indicates that scoring varied with sex and a specific sex per slaughterhouse threshold linear model should be used in order to guarantee the goodness-of-fit of the genetic evaluation model. This was also observed in grouped data models that avoided fitting deficiencies when slaughterhouse and sex effects were score-dependent. Conclusions: Both threshold linear models and grouped data models can guarantee the goodness-of-fit of the genetic evaluation for carcass conformation and fat cover, but our results highlight the need for specific thresholds by sex and slaughterhouse in order to avoid fitting deficiencies

    Genetic parameters for social effects on survival in cannibalistic layers: Combining survival analysis and a linear animal model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mortality due to cannibalism in laying hens is a difficult trait to improve genetically, because censoring is high (animals still alive at the end of the testing period) and it may depend on both the individual itself and the behaviour of its group members, so-called associative effects (social interactions). To analyse survival data, survival analysis can be used. However, it is not possible to include associative effects in the current software for survival analysis. A solution could be to combine survival analysis and a linear animal model including associative effects. This paper presents a two-step approach (2STEP), combining survival analysis and a linear animal model including associative effects (LAM).</p> <p>Methods</p> <p>Data of three purebred White Leghorn layer lines from Institut de Sélection Animale B.V., a Hendrix Genetics company, were used in this study. For the statistical analysis, survival data on 16,780 hens kept in four-bird cages with intact beaks were used. Genetic parameters for direct and associative effects on survival time were estimated using 2STEP. Cross validation was used to compare 2STEP with LAM. LAM was applied directly to estimate genetic parameters for social effects on observed survival days.</p> <p>Results</p> <p>Using 2STEP, total heritable variance, including both direct and associative genetic effects, expressed as the proportion of phenotypic variance, ranged from 32% to 64%. These results were substantially larger than when using LAM. However, cross validation showed that 2STEP gave approximately the same survival curves and rank correlations as LAM. Furthermore, cross validation showed that selection based on both direct and associative genetic effects, using either 2STEP or LAM, gave the best prediction of survival time.</p> <p>Conclusion</p> <p>It can be concluded that 2STEP can be used to estimate genetic parameters for direct and associative effects on survival time in laying hens. Using 2STEP increased the heritable variance in survival time. Cross validation showed that social genetic effects contribute to a large difference in survival days between two extreme groups. Genetic selection targeting both direct and associative effects is expected to reduce mortality due to cannibalism in laying hens.</p

    Accounting for genomic pre-selection in national BLUP evaluations in dairy cattle

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In future Best Linear Unbiased Prediction (BLUP) evaluations of dairy cattle, genomic selection of young sires will cause evaluation biases and loss of accuracy once the selected ones get progeny.</p> <p>Methods</p> <p>To avoid such bias in the estimation of breeding values, we propose to include information on all genotyped bulls, including the culled ones, in BLUP evaluations. Estimated breeding values based on genomic information were converted into genomic pseudo-performances and then analyzed simultaneously with actual performances. Using simulations based on actual data from the French Holstein population, bias and accuracy of BLUP evaluations were computed for young sires undergoing progeny testing or genomic pre-selection. For bulls pre-selected based on their genomic profile, three different types of information can be included in the BLUP evaluations: (1) data from pre-selected genotyped candidate bulls with actual performances on their daughters, (2) data from bulls with both actual and genomic pseudo-performances, or (3) data from all the genotyped candidates with genomic pseudo-performances. The effects of different levels of heritability, genomic pre-selection intensity and accuracy of genomic evaluation were considered.</p> <p>Results</p> <p>Including information from all the genotyped candidates, i.e. genomic pseudo-performances for both selected and culled candidates, removed bias from genetic evaluation and increased accuracy. This approach was effective regardless of the magnitude of the initial bias and as long as the accuracy of the genomic evaluations was sufficiently high.</p> <p>Conclusions</p> <p>The proposed method can be easily and quickly implemented in BLUP evaluations at the national level, although some improvement is necessary to more accurately propagate genomic information from genotyped to non-genotyped animals. In addition, it is a convenient method to combine direct genomic, phenotypic and pedigree-based information in a multiple-step procedure.</p

    Developing flexible models for genetic evaluations in smallholder crossbred dairy farms

    Get PDF
    The productivity of smallholder dairy farms is very low in developing countries. Important genetic gains could be realized using genomic selection, but genetic evaluations need to be tailored for lack of pedigree information and very small farm sizes. To accommodate this situation, we propose a flexible Bayesian model for the genetic evaluation of milk yield, which allows us to simultaneously account for nongenetic random effects for farms and varying SNP variance (BayesR model). First, we used simulations based on real genotype data from Indian crossbred dairy cattle to demonstrate that the proposed model can separate the true genetic and nongenetic parameters even for small farm sizes (2 cows on average) although with high standard errors in scenarios with low heritability. The accuracy of genomic genetic evaluation increased until farm size was approximately 5. We then applied the model to real data from 4,655 crossbred cows with 106,109 monthly test day milk records and 689,750 autosomal SNPs. We estimated a heritability of 0.16 (0.04) for milk yield and using cross-validation, a genomic estimated breeding value (GEBV) accuracy of 0.45 and bias (regression of phenotype on GEBV) of 1.04 (0.26). Estimated genetic parameters were very similar using BayesR, BayesC, and genomic BLUP approaches. Candidate genes near the top variants, IMMP2L and ARHGEF2, have been previously associated with milk protein composition, mastitis resistance, and milk cholesterol content. The estimated heritability and GEBV accuracy for milk yield are much lower than those from intensive or pasture-based systems in many countries. Further increases in the number of phenotyped and genotyped animals in farms with at least 2 cows (preferably 3–5, to allow for dropout of cows) are needed to improve the estimation of genetic effects in these smallholder dairy farms

    The Evolution of Bat Vestibular Systems in the Face of Potential Antagonistic Selection Pressures for Flight and Echolocation

    Get PDF
    PMCID: PMC3634842This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Early diagnosis of acute coronary syndrome.

    Get PDF
    The diagnostic evaluation of acute chest pain has been augmented in recent years by advances in the sensitivity and precision of cardiac troponin assays, new biomarkers, improvements in imaging modalities, and release of new clinical decision algorithms. This progress has enabled physicians to diagnose or rule-out acute myocardial infarction earlier after the initial patient presentation, usually in emergency department settings, which may facilitate prompt initiation of evidence-based treatments, investigation of alternative diagnoses for chest pain, or discharge, and permit better utilization of healthcare resources. A non-trivial proportion of patients fall in an indeterminate category according to rule-out algorithms, and minimal evidence-based guidance exists for the optimal evaluation, monitoring, and treatment of these patients. The Cardiovascular Round Table of the ESC proposes approaches for the optimal application of early strategies in clinical practice to improve patient care following the review of recent advances in the early diagnosis of acute coronary syndrome. The following specific 'indeterminate' patient categories were considered: (i) patients with symptoms and high-sensitivity cardiac troponin 99th percentile but without dynamic change; and (iv) patients with symptoms and high-sensitivity troponin >99th percentile and dynamic change but without coronary plaque rupture/erosion/dissection. Definitive evidence is currently lacking to manage these patients whose early diagnosis is 'indeterminate' and these areas of uncertainty should be assigned a high priority for research

    Genetic Resistance to Rhabdovirus Infection in Teleost Fish Is Paralleled to the Derived Cell Resistance Status

    Get PDF
    Genetic factors of resistance and predisposition to viral diseases explain a significant part of the clinical variability observed within host populations. Predisposition to viral diseases has been associated to MHC haplotypes and T cell immunity, but a growing repertoire of innate/intrinsic factors are implicated in the genetic determinism of the host susceptibility to viruses. In a long-term study of the genetics of host resistance to fish rhabdoviruses, we produced a collection of double-haploid rainbow trout clones showing a wide range of susceptibility to Viral Hemorrhagic Septicemia Virus (VHSV) waterborne infection. The susceptibility of fibroblastic cell lines derived from these clonal fish was fully consistent with the susceptibility of the parental fish clones. The mechanisms determining the host resistance therefore did not associate with specific host immunity, but rather with innate or intrinsic factors. One cell line was resistant to rhabdovirus infection due to the combination of an early interferon IFN induction - that was not observed in the susceptible cells - and of yet unknown factors that hamper the first steps of the viral cycle. The implication of IFN was well consistent with the wide range of resistance of this genetic background to VSHV and IHNV, to the birnavirus IPNV and the orthomyxovirus ISAV. Another cell line was even more refractory to the VHSV infection through different antiviral mechanisms. This collection of clonal fish and isogenic cell lines provides an interesting model to analyze the relative contribution of antiviral pathways to the resistance to different viruses
    • …
    corecore