17 research outputs found

    Adult Low-Hypodiploid Acute Lymphoblastic Leukemia Emerges from Preleukemic TP53-Mutant Clonal Hematopoiesis

    Get PDF
    UNLABELLED Low hypodiploidy defines a rare subtype of B-cell acute lymphoblastic leukemia (B-ALL) with a dismal outcome. To investigate the genomic basis of low-hypodiploid ALL (LH-ALL) in adults, we analyzed copy-number aberrations, loss of heterozygosity, mutations, and cytogenetics data in a prospective cohort of Philadelphia (Ph)-negative B-ALL patients (n = 591, ages 18-84 years), allowing us to identify 80 LH-ALL cases (14%). Genomic analysis was critical for evidencing low hypodiploidy in many cases missed by cytogenetics. The proportion of LH-ALL within Ph-negative B-ALL dramatically increased with age, from 3% in the youngest patients (under 40 years old) to 32% in the oldest (over 55 years old). Somatic TP53 biallelic inactivation was the hallmark of adult LH-ALL, present in virtually all cases (98%). Strikingly, we detected TP53 mutations in posttreatment remission samples in 34% of patients. Single-cell proteogenomics of diagnosis and remission bone marrow samples evidenced a preleukemic, multilineage, TP53-mutant clone, reminiscent of age-related clonal hematopoiesis. SIGNIFICANCE We show that low-hypodiploid ALL is a frequent entity within B-ALL in older adults, relying on somatic TP53 biallelic alteration. Our study unveils a link between aging and low-hypodiploid ALL, with TP53-mutant clonal hematopoiesis representing a preleukemic reservoir that can give rise to aneuploidy and B-ALL. See related commentary by Saiki and Ogawa, p. 102. This article is highlighted in the In This Issue feature, p. 101

    Clonal Architecture and Evolutionary Dynamics in Acute Myeloid Leukemias

    No full text
    International audienceAcute myeloid leukemias (AML) results from the accumulation of genetic and epigenetic alterations, often in the context of an aging hematopoietic environment. The development of high-throughput sequencing—and more recently, of single-cell technologies—has shed light on the intratumoral diversity of leukemic cells. Taking AML as a model disease, we review the multiple sources of genetic, epigenetic, and functional heterogeneity of leukemic cells and discuss the definition of a leukemic clone extending its definition beyond genetics. After introducing the two dimensions contributing to clonal diversity, namely, richness (number of leukemic clones) and evenness (distribution of clone sizes), we discuss the mechanisms at the origin of clonal emergence (mutation rate, number of generations, and effective size of the leukemic population) and the causes of clonal dynamics. We discuss the possible role of neutral drift, but also of cell-intrinsic and -extrinsic influences on clonal fitness. After reviewing available data on the prognostic role of genetic and epigenetic diversity of leukemic cells on patients’ outcome, we discuss how a better understanding of AML as an evolutionary process could lead to the design of novel therapeutic strategies in this disease

    High effector-memory CD8+ T-cell levels correlate with high PML risk in natalizumab-treated patients

    No full text
    International audienceBackground: Progressive multifocal leukoencephalopathy (PML) is a severe complication of natalizumab (NTZ) treatment in multiple sclerosis (MS) patients. Based on the analysis of cryopreserved cells, several reports have showed that CD62L+ CD4+ T-cells percentage drops before PML onset.Objective: To analyze CD62L and CD45RA expression on fresh-blood CD4+ and CD8+ T-cells from NTZ-treated patients, according to their estimated PML risk.Methods: We prospectively enrolled 74 MS patients, including 62 NTZ-treated, and stratified them into low, intermediate and high PML risk groups. Circulating naĂŻve and memory T-cell subsets were analyzed by flow cytometry.Results: We found no correlation between the percentage of CD62L+ CD4+ T-cells and PML risk. In contrast, the repartition of CD8+ T-cells subpopulations was altered in the high risk group: both the percentage and absolute count of CD8+ CD62L- CD45RA- effector memory T- cells (TEM) was significantly higher compared to patients at lower risk despite similar CD3+ and CD8+ T-cell counts. One high-risk patient with elevated CD8+ TEM and CD62L+ CD4+ T-cell levels developed PML six months after sampling.Conclusion: Our results suggest that CD8+ TEM cells should be evaluated in larger studies as a potential surrogate marker of PML risk in NTZ-treated patients

    Frugal alignment-free identification of FLT3-internal tandem duplications with FiLT3r

    No full text
    International audienceAbstract Background Internal tandem duplications in the FLT3 gene, termed FLT3 -ITDs, are useful molecular markers in acute myeloid leukemia (AML) for patient risk stratification and follow-up. FLT3 -ITDs are increasingly screened through high-throughput sequencing (HTS) raising the need for robust and efficient algorithms. We developed a new algorithm, which performs no alignment and uses little resources, to identify and quantify FLT3 -ITDs in HTS data. Results Our algorithm (FiLT3r) focuses on the k -mers from reads covering FLT3 exons 14 and 15. We show that those k -mers bring enough information to accurately detect, determine the length and quantify FLT3 -ITD duplications. We compare the performances of FiLT3r to state-of-the-art alternatives and to fragment analysis, the gold standard method, on a cohort of 185 AML patients sequenced with capture-based HTS. On this dataset FiLT3r is more precise (no false positive nor false negative) than the other software evaluated. We also assess the software on public RNA-Seq data, which confirms the previous results and shows that FiLT3r requires little resources compared to other software. Conclusion FiLT3r is a free software available at https://gitlab.univ-lille.fr/filt3r/filt3r . The repository also contains a Snakefile to reproduce our experiments. We show that FiLT3r detects FLT3-ITDs better than other software while using less memory and time

    Molecular Landscape of Therapy-related Myeloid Neoplasms in Patients Previously Treated for Gynecologic and Breast Cancers

    No full text
    International audienceDefinition of therapy-related myeloid neoplasms (TRMN) is only based on clinical history of exposure to leukemogenic therapy. No specific molecular classification combining therapy-related acute myeloid leukemia and therapy-related myelodysplastic syndromes has been proposed. We aimed to describe the molecular landscape of TRMN at diagnosis, among 77 patients with previous gynecologic and breast cancer with a dedicated next-generation sequencing panel covering 74 genes. We investigated the impact of clonal hematopoiesis of indeterminate potential-associated mutations (CHIP-AMs defined as presence at TRMN stage of mutations described in CHIP with a frequency >1%) on overall survival (OS) and the clinical relevance of a modified genetic ontogeny-based classifier that categorized patients in 3 subgroups. The most frequently mutated genes were TP53 (31%), DNMT3A (19%), IDH1/2 (13%), NRAS (13%), TET2 (12%), NPM1 (10%), PPM1D (9%), and PTPN11 (9%). CHIP-AMs were detected in 66% of TRMN patients, with no impact on OS. Yet, patients with CHIP-AM were older and had a longer time interval between solid tumor diagnosis and TRMN. According to our modified ontogeny-based classifier, we observed that the patients with TP53 or PPM1D mutations had more treatment lines and complex karyotypes, the "MDS-like" patients were older with more gene mutations, while patients with "De novo/pan-AML" mutations were younger with more balanced chromosomal translocations. Median OS within each subgroup was 7.5, 14.5, and 25.2 months, respectively, with statistically significant difference in multivariate analysis. These results support the integration of cytogenetic and molecular markers into the future TRMN classification to reflect the biological diversity of TRMN and its impact on outcomes

    Prognostic significance of concurrent gene mutations i n intensively treated patients with IDH-mutated AML: an ALFA study

    No full text
    International audienceIn patients with isocitrate dehydrogenase (IDH)-mutated acute myeloid leukemia (AML) treated by intensive chemotherapy (IC), prognostic significance of co-occurring genetic alterations and allogeneic hematopoietic stem cell transplantation (HSCT) are of particular interest with the advent of IDH1/2 mutant inhibitors. We retrospectively analyzed 319 patients with newly diagnosed AML (127 with IDH1, 135 with IDH2R140, and 57 with IDH2R172 mutations) treated with IC in 3 Acute Leukemia French Association prospective trials. In each IDH subgroup, we analyzed the prognostic impact of clinical and genetic covariates, and the role of HSCT. In patients with IDH1 mutations, the presence of NPM1 mutations was the only variable predicting improved overall survival (OS) in multivariate analysis (P< .0001). In IDH2R140-mutated AML, normal karyotype (P = .008) and NPM1 mutations (P = .01) predicted better OS. NPM1 mutations were associated with better disease-free survival (DFS; P = .0009), whereas the presence of DNMT3A mutations was associated with shorter DFS (P = .0006). In IDH2R172-mutated AML, platelet count was the only variable retained in the multivariate model for OS (P = .002). Among nonfavorable European LeukemiaNet 2010-eligible patients, 71 (36%) underwent HSCT in first complete remission (CR1) and had longer OS (P = .03) and DFS (P = .02) than nontransplanted patients. Future clinical trials testing frontline IDH inhibitors combined with IC may consider stratification on NPM1 mutational status, the primary prognostic factor in IDH1- or IDH2R140-mutated AML. HSCT improve OS of nonfavorable IDH1/2-mutated AML and should be fully integrated into the treatment strategy

    Adult Low-Hypodiploid Acute Lymphoblastic Leukemia Emerges from Preleukemic TP53 -Mutant Clonal Hematopoiesis

    No full text
    International audienceAbstract Low hypodiploidy defines a rare subtype of B-cell acute lymphoblastic leukemia (B-ALL) with a dismal outcome. To investigate the genomic basis of low-hypodiploid ALL (LH-ALL) in adults, we analyzed copy-number aberrations, loss of heterozygosity, mutations, and cytogenetics data in a prospective cohort of Philadelphia (Ph)-negative B-ALL patients (n = 591, ages 18–84 years), allowing us to identify 80 LH-ALL cases (14%). Genomic analysis was critical for evidencing low hypodiploidy in many cases missed by cytogenetics. The proportion of LH-ALL within Ph-negative B-ALL dramatically increased with age, from 3% in the youngest patients (under 40 years old) to 32% in the oldest (over 55 years old). Somatic TP53 biallelic inactivation was the hallmark of adult LH-ALL, present in virtually all cases (98%). Strikingly, we detected TP53 mutations in posttreatment remission samples in 34% of patients. Single-cell proteogenomics of diagnosis and remission bone marrow samples evidenced a preleukemic, multilineage, TP53-mutant clone, reminiscent of age-related clonal hematopoiesis. Significance: We show that low-hypodiploid ALL is a frequent entity within B-ALL in older adults, relying on somatic TP53 biallelic alteration. Our study unveils a link between aging and low-hypodiploid ALL, with TP53-mutant clonal hematopoiesis representing a preleukemic reservoir that can give rise to aneuploidy and B-ALL. See related commentary by Saiki and Ogawa, p. 102. This article is highlighted in the In This Issue feature, p. 10
    corecore