411 research outputs found

    Soil surface moisture estimation over a semi-arid region using ENVISAT ASAR radar data for soil evaporation evaluation

    Get PDF
    The present paper proposes a method for the evaluation of soil evaporation, using soil moisture estimations based on radar satellite measurements. We present firstly an approach for the estimation and monitoring of soil moisture in a semi-arid region in North Africa, using ENVISAT ASAR images, over two types of vegetation covers. The first mapping process is dedicated solely to the monitoring of moisture variability related to rainfall events, over areas in the "non-irrigated olive tree" class of land use. The developed approach is based on a simple linear relationship between soil moisture and the backscattered radar signal normalised at a reference incidence angle. The second process is proposed over wheat fields, using an analysis of moisture variability due to both rainfall and irrigation. A semi-empirical model, based on the water-cloud model for vegetation correction, is used to retrieve soil moisture from the radar signal. Moisture mapping is carried out over wheat fields, showing high variability between irrigated and non-irrigated wheat covers. This analysis is based on a large database, including both ENVISAT ASAR and simultaneously acquired ground-truth measurements (moisture, vegetation, roughness), during the 2008–2009 vegetation cycle. Finally, a semi-empirical approach is proposed in order to relate surface moisture to the difference between soil evaporation and the climate demand, as defined by the potential evaporation. Mapping of the soil evaporation is proposed

    Urban agriculture: multi-dimensional tools for social development in poor neighbourhoods

    Get PDF
    For over 30 years, different urban agriculture (UA) experiments have been undertaken in Montreal (Quebec, Canada). The Community Gardening Program, managed by the City, and 6 collective gardens, managed by community organizations, are discussed in this article. These experiments have different objectives, including food security, socialization and education. Although these have changed over time, they have also differed depending on geographic location (neighbourhood). The UA initiatives in Montreal have resulted in the development of a centre with a significant vegetable production and a socialization and education environment that fosters individual and collective social development in districts with a significant economically disadvantaged population. The various approaches attain the established objectives and these are multi-dimensional tools used for the social development of disadvantaged populations.Depuis plus de 30 ans, différentes expériences d’AU ont été tentée à Montréal (Québec, Canada). Le programme des jardins communautaires, géré par la Ville, et 6 jardins collectifs, gérés par des organisations communautaires, sont examinés dans le cadre de cet article.  Ces expériences visent différents objectifs : accroître la sécurité alimentaire, sociabiliser, éduquer, etc. Les objectifs évoluent dans le temps mais aussi selon les quartiers. Notre étude révèle que les initiatives en AU à Montréal sont un lieu de production de légumes non négligeable, un espace pour sociabiliser et un lieu d’éducation favorisant un développement social individuel et collectif des quartiers ayant une forte présence de population économique défavorisée. Les différentes approches atteignent les objectifs identifiés et permettent le développement d’outils multi-facettes favorisant le développement social des populations défavorisées.Durante más de 30 años se han realizado diversos experimentos relacionados con la agricultura urbana en Montreal (Québec, Canadá). Este artículo analiza el Programa de Horticultura Comunitario, gestionado por la ciudad, y 6 huertos colectivos, gestionados por organizaciones comunitarias. Estos experimentos cuentan con objetivos diferentes, entre los que se encuentran la seguridad alimentaria, la socialización y la educación. Con el paso del tiempo estos programas han ido evolucionando. Los proyectos se diferencian según la ubicación geográfica en la que se encuentran (barrios). Las iniciativas de agricultura urbana en Montreal han conseguido el desarrollo de un centro con una importante producción hortícola, así como un contexto de socialización y educación que fomenta el desarrollo social individual y colectivo en las zonas con un importante número de población económicamente desfavorecida. The authors would like to thank Kelly Krater, Mathieu Roy and Julie Richard from Action Communiterre, Magdouda Oudjit from Maison Quartier de Villeray, Delphine Marot and Stéphane Bergeron from the ACSA, Gratia Lapointe from Nutri-Centre LaSalle, Dominique Lacroix from Bouffe-Action de Rosemont and Denis Rousseau from the collective garden La Croisée. We would also like to thank Jean-Marie Chapeau from Centraide, André Pedneault from the City of Montreal and Lucie Sauvé, Canada Chair in Environmental Education at UQAM. This article is in line with several research projects, such as those of the Canada Research Chair in environmental education, which include a research program that highlights the foundations, practices and issues involved in “the educational experience” provided in two collective urban gardens and that of the Institut des sciences de l’environnement and the City of Montreal, which are based on the community gardens program

    Accurate strain measurements in highly strained Ge microbridges

    Full text link
    Ge under high strain is predicted to become a direct bandgap semiconductor. Very large deformations can be introduced using microbridge devices. However, at the microscale, strain values are commonly deduced from Raman spectroscopy using empirical linear models only established up to 1.2% for uniaxial stress. In this work, we calibrate the Raman-strain relation at higher strain using synchrotron based microdiffraction. The Ge microbridges show unprecedented high tensile strain up to 4.9 % corresponding to an unexpected 9.9 cm-1 Raman shift. We demonstrate experimentally and theoretically that the Raman strain relation is not linear and we provide a more accurate expression.Comment: 10 pages, 4 figure

    Water use efficiency and yield of winter wheat under different irrigation regimes in a semi-arid region

    Get PDF
    In irrigation schemes under rotational water supply in semi-arid region, the water allocation and irrigation scheduling are often based on a fixed-area proportionate water depth with every irrigation cycle irrespective of crops and their growth stages, for an equitable water supply. An experiment was conducted during the 2004- 2005 season in Haouz irrigated area in Morocco, which objective was 1) to evaluate the effects of the surface irrigation scheduling method (ex-isting rule) adopted by the irrigation agency on winter wheat production compared to a full ir-rigation method and 2) to evaluate drip irrigation versus surface irrigation impacts on water sav-ing and yield of winter wheat. The methodology was based on the FAO-56 dual approach for the surface irrigation scheduling. Ground measure- ments of the Normalized Difference Vegetation Index (NDVI) were used to derive the basal crop coefficient and the vegetation fraction cover. The simple FAO-56 approach was used for drip irrigation scheduling. For surface irrigation, the existing rule approach resulted in yield and WUE reductions of 22% and 15%, respectively, compared with the optimized irrigation sched-uling proposed by the FAO-56 for full irrigation treatment. This revealed the negative effects of the irrigation schedules adopted in irrigation schemes under rotational water supply on crops productivity. It was also demonstrated that drip irrigation applied to wheat was more efficient with 20% of water saving in comparison with surface irrigation (full irrigation treatment). Drip irrigation gives also higher wheat yield com-pared to surface irrigation (+28% and +52% for full irrigation and existing rule treatments re-spectively). The same improvement was ob-served for water use efficiency (+24% and +59% respectively)

    Astrometric positions for 18 irregular satellites of giant planets from 23 years of observations

    Full text link
    The irregular satellites of the giant planets are believed to have been captured during the evolution of the solar system. Knowing their physical parameters, such as size, density, and albedo is important for constraining where they came from and how they were captured. The best way to obtain these parameters are observations in situ by spacecrafts or from stellar occultations by the objects. Both techniques demand that the orbits are well known. We aimed to obtain good astrometric positions of irregular satellites to improve their orbits and ephemeris. We identified and reduced observations of several irregular satellites from three databases containing more than 8000 images obtained between 1992 and 2014 at three sites (Observat\'orio do Pico dos Dias, Observatoire de Haute-Provence, and European Southern Observatory - La Silla). We used the software PRAIA (Platform for Reduction of Astronomical Images Automatically) to make the astrometric reduction of the CCD frames. The UCAC4 catalog represented the International Celestial Reference System in the reductions. Identification of the satellites in the frames was done through their ephemerides as determined from the SPICE/NAIF kernels. Some procedures were followed to overcome missing or incomplete information (coordinates, date), mostly for the older images. We managed to obtain more than 6000 positions for 18 irregular satellites: 12 of Jupiter, 4 of Saturn, 1 of Uranus (Sycorax), and 1 of Neptune (Nereid). For some satellites the number of obtained positions is more than 50\% of what was used in earlier orbital numerical integrations. Comparison of our positions with recent JPL ephemeris suggests there are systematic errors in the orbits for some of the irregular satellites. The most evident case was an error in the inclination of Carme.Comment: 9 pages, with 3 being online materia

    Mosquito Abundance, Bed net Coverage and Other Factors Associated with Variations in Sporozoite Infectivity Rates in Four Villages of Rural Tanzania.

    Get PDF
    Entomological surveys are of great importance in decision-making processes regarding malaria control strategies because they help to identify associations between vector abundance both species-specific ecology and disease intervention factors associated with malaria transmission. Sporozoite infectivity rates, mosquito host blood meal source, bed net coverage and mosquito abundance were assessed in this study. A longitudinal survey was conducted in four villages in two regions of Tanzania. Malaria vectors were sampled using the CDC light trap and pyrethrum spray catch methods. In each village, ten paired houses were selected for mosquitoes sampling. Sampling was done in fortnight case and study was undertaken for six months in both Kilimanjaro (Northern Tanzania) and Dodoma (Central Tanzania) regions. A total of 6,883 mosquitoes were collected including: 5,628 (81.8%) Anopheles arabiensis, 1,100 (15.9%) Culex quinquefasciatus, 89 (1.4%) Anopheles funestus, and 66 (0.9%) Anopheles gambiae s.s. Of the total mosquitoes collected 3,861 were captured by CDC light trap and 3,022 by the pyrethrum spray catch method. The overall light trap: spray catch ratio was 1.3:1. Mosquito densities per room were 96.5 and 75.5 for light trap and pyrethrum spray catch respectively. Mosquito infectivity rates between villages that have high proportion of bed net owners and those without bed nets was significant (P < 0.001) and there was a significant difference in sporozoite rates between households with and without bed nets in these four villages (P < 0.001). Malaria remains a major problem in the study areas characterized as low transmission sites. Further studies are required to establish the annual entomological inoculation rates and to observe the annual parasitaemia dynamics in these communities. Outdoor mosquitoes collection should also be considered
    corecore