22 research outputs found

    Hidden bias in the DUD-E dataset leads to misleading performance of deep learning in structure-based virtual screening

    Full text link
    Recently much effort has been invested in using convolutional neural network (CNN) models trained on 3D structural images of protein-ligand complexes to distinguish binding from non-binding ligands for virtual screening. However, the dearth of reliable protein-ligand x-ray structures and binding affinity data has required the use of constructed datasets for the training and evaluation of CNN molecular recognition models. Here, we outline various sources of bias in one such widely-used dataset, the Directory of Useful Decoys: Enhanced (DUDE). We have constructed and performed tests to investigate whether CNN models developed using DUD-E are properly learning the underlying physics of molecular recognition, as intended, or are instead learning biases inherent in the dataset itself. We find that superior enrichment efficiency in CNN models can be attributed to the analogue and decoy bias hidden in the DUD-E dataset rather than successful generalization of the pattern of proteinligand interactions. Comparing additional deep learning models trained on PDBbind datasets, we found that their enrichment performances using DUD-E are not superior to the performance of the docking program AutoDock Vina. Together, these results suggest that biases that could be present in constructed datasets should be thoroughly evaluated before applying them to machine learning based methodology development

    Hidden bias in the DUD-E dataset leads to misleading performance of deep learning in structure-based virtual screening

    Full text link
    Recently much effort has been invested in using convolutional neural network (CNN) models trained on 3D structural images of protein-ligand complexes to distinguish binding from non-binding ligands for virtual screening. However, the dearth of reliable protein-ligand x-ray structures and binding affinity data has required the use of constructed datasets for the training and evaluation of CNN molecular recognition models. Here, we outline various sources of bias in one such widely-used dataset, the Directory of Useful Decoys: Enhanced (DUDE). We have constructed and performed tests to investigate whether CNN models developed using DUD-E are properly learning the underlying physics of molecular recognition, as intended, or are instead learning biases inherent in the dataset itself. We find that superior enrichment efficiency in CNN models can be attributed to the analogue and decoy bias hidden in the DUD-E dataset rather than successful generalization of the pattern of proteinligand interactions. Comparing additional deep learning models trained on PDBbind datasets, we found that their enrichment performances using DUD-E are not superior to the performance of the docking program AutoDock Vina. Together, these results suggest that biases that could be present in constructed datasets should be thoroughly evaluated before applying them to machine learning based methodology development

    Uncoupling the structure–activity relationships of β2 adrenergic receptor ligands from membrane binding

    Get PDF
    Ligand binding to membrane proteins may be significantly influenced by the interaction of ligands with the membrane. In particular, the microscopic ligand concentration within the membrane surface solvation layer may exceed that in bulk solvent, resulting in overestimation of the intrinsic protein−ligand binding contribution to the apparent/measured affinity. Using published binding data for a set of small molecules with the β2 adrenergic receptor, we demonstrate that deconvolution of membrane and protein binding contributions allows for improved structure−activity relationship analysis and structure-based drug design. Molecular dynamics simulations of ligand bound membrane protein complexes were used to validate binding poses, allowing analysis of key interactions and binding site solvation to develop structure−activity relationships of β2 ligand binding. The resulting relationships are consistent with intrinsic binding affinity (corrected for membrane interaction). The successful structure-based design of ligands targeting membrane proteins may require an assessment of membrane affinity to uncouple protein binding from membrane interactions

    Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.

    Get PDF
    BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700

    2015/16 seasonal vaccine effectiveness against hospitalisation with influenza a(H1N1)pdm09 and B among elderly people in Europe: Results from the I-MOVE+ project

    Get PDF
    We conducted a multicentre test-negative caseâ\u80\u93control study in 27 hospitals of 11 European countries to measure 2015/16 influenza vaccine effectiveness (IVE) against hospitalised influenza A(H1N1)pdm09 and B among people aged â\u89¥ 65 years. Patients swabbed within 7 days after onset of symptoms compatible with severe acute respiratory infection were included. Information on demographics, vaccination and underlying conditions was collected. Using logistic regression, we measured IVE adjusted for potential confounders. We included 355 influenza A(H1N1)pdm09 cases, 110 influenza B cases, and 1,274 controls. Adjusted IVE against influenza A(H1N1)pdm09 was 42% (95% confidence interval (CI): 22 to 57). It was 59% (95% CI: 23 to 78), 48% (95% CI: 5 to 71), 43% (95% CI: 8 to 65) and 39% (95% CI: 7 to 60) in patients with diabetes mellitus, cancer, lung and heart disease, respectively. Adjusted IVE against influenza B was 52% (95% CI: 24 to 70). It was 62% (95% CI: 5 to 85), 60% (95% CI: 18 to 80) and 36% (95% CI: -23 to 67) in patients with diabetes mellitus, lung and heart disease, respectively. 2015/16 IVE estimates against hospitalised influenza in elderly people was moderate against influenza A(H1N1)pdm09 and B, including among those with diabetes mellitus, cancer, lung or heart diseases

    Structure–Kinetic Relationships of Passive Membrane Permeation from Multiscale Modeling

    No full text
    Passive membrane permeation of small molecules is essential to achieve the required absorption, distribution, metabolism, and excretion (ADME) profiles of drug candidates, in particular intestinal absorption and transport across the blood–brain barrier. Computational investigations of this process typically involve either building QSAR models or performing free energy calculations of the permeation event. Although insightful, these methods rarely bridge the gap between computation and experiment in a quantitative manner, and identifying structural insights to apply toward the design of compounds with improved permeability can be difficult. In this work, we combine molecular dynamics simulations capturing the kinetic steps of permeation at the atomistic level with a dynamic mechanistic model describing permeation at the in vitro level, finding a high level of agreement with experimental permeation measurements. Calculation of the kinetic rate constants determining each step in the permeation event allows derivation of structure–kinetic relationships of permeation. We use these relationships to probe the structural determinants of membrane permeation, finding that the desolvation/loss of hydrogen bonding required to leave the membrane partitioned position controls the membrane flip-flop rate, whereas membrane partitioning determines the rate of leaving the membrane

    Rethinking drug design in the artificial intelligence era

    No full text
    Artificial intelligence (AI) tools are increasingly being applied in drug discovery. While some protagonists point to vast opportunities potentially offered by such tools, others remain sceptical, waiting for a clear impact to be shown in drug discovery projects. The reality is probably somewhere in-between these extremes, yet it is clear that AI is providing new challenges not only for the scientists involved but also for the biopharma industry and its established processes for discovering and developing new medicines. This article presents the views of a diverse group of international experts on the ‘grand challenges’ in small-molecule drug discovery with AI and the approaches to address them

    High SARS-CoV-2 Seroprevalence and Rapid Neutralizing Antibody Decline among Agricultural Workers in Rural Guatemala, June 2020–March 2021

    No full text
    Essential agricultural workers work under occupational conditions that may increase the risk of SARS-CoV-2 exposure and transmission. Data from an agricultural worker cohort in Guatemala, and anti-SARS-CoV-2 nucleocapsid IgG (anti-N IgG) testing were used to estimate past infections and analyze risk factors associated with seropositivity at enrollment and association with SARS-CoV-2 infection. The stability of neutralizing antibody (NAb) responses were assessed in a subset of participants. The adjusted relative risk (aRR) for seroprevalence at enrollment was estimated accounting for correlations within worksites. At enrollment, 616 (46.2%) of 1334 (93.2%) participants had anti-N IgG results indicating prior SARS-CoV-2 infection. A cough ≤ 10 days prior to enrollment (aRR = 1.28, 95% CI: 1.13–1.46) and working as a packer (aRR = 2.00, 95% CI: 1.67–2.38) or packing manager within the plants (aRR = 1.82, 95% CI: 1.36–2.43) were associated with increased risk of seropositivity. COVID-19 incidence density among seronegative workers was 2.3/100 Person-Years (P-Y), higher than seropositive workers (0.4/100 P-Y). Most workers with follow-up NAb testing (65/77, 84%) exhibited a 95% average decrease in NAb titers in <6 months. While participants seropositive at baseline were less likely to experience a symptomatic SARS-CoV-2 infection during follow-up, NAb titers rapidly waned, underscoring the need for multipronged COVID-19 prevention strategies in the workplace, including vaccination
    corecore