91 research outputs found

    Spatially resolved capture of hydrogen sulfide from the water column and sedimentary pore waters for abundance and stable isotopic analysis

    Get PDF
    Sulfur cycling is ubiquitous in sedimentary environments, where it plays a major role in mediating carbon remineralization and impacts both local and global redox budgets. Microbial sulfur cycling is dominated by metabolic activity that either produces (e.g., sulfate reduction, disproportionation) or consumes (sulfide oxidation) hydrogen sulfide (H2S). As such, improved constraints on the production, distribution, and consumption of H2S in the natural environment will increase our understanding of microbial sulfur cycling. These different microbial sulfur metabolisms are additionally associated with particular stable isotopic fractionations. Coupling measurements of the isotopic composition of the sulfide with its distribution can provide additional information about environmental conditions and microbial ecology. Here we investigate the kinetics of sulfide capture on photographic films as a way to document the spatial distribution of sulfide in complex natural environments as well as for in situ capture of H2S for subsequent stable isotopic analysis. Laboratory experiments and timed field deployments demonstrate the ability to infer ambient sulfide abundances from the yield of sulfide on the films. This captured sulfide preserves the isotopic composition of the ambient sulfide, offset to slightly lower δ34S values by ~ 1.2 ± 0.5‰ associated with the diffusion of sulfide into the film and subsequent reaction with silver to form Ag2S precipitates. The resulting data enable the exploration of cm-scale lateral heterogeneity that complement most geochemical profiles using traditional techniques in natural environments. Because these films can easily be deployed over a large spatial area, they are also ideal for real-time assessment of the spatial and temporal dynamics of a site during initial reconnaissance and for integration over long timescales to capture ephemeral processes

    What's New Is Old: Resolving the Identity of Leptothrix ochracea Using Single Cell Genomics, Pyrosequencing and FISH

    Get PDF
    Leptothrix ochracea is a common inhabitant of freshwater iron seeps and iron-rich wetlands. Its defining characteristic is copious production of extracellular sheaths encrusted with iron oxyhydroxides. Surprisingly, over 90% of these sheaths are empty, hence, what appears to be an abundant population of iron-oxidizing bacteria, consists of relatively few cells. Because L. ochracea has proven difficult to cultivate, its identification is based solely on habitat preference and morphology. We utilized cultivation-independent techniques to resolve this long-standing enigma. By selecting the actively growing edge of a Leptothrix-containing iron mat, a conventional SSU rRNA gene clone library was obtained that had 29 clones (42% of the total library) related to the Leptothrix/Sphaerotilus group (≤96% identical to cultured representatives). A pyrotagged library of the V4 hypervariable region constructed from the bulk mat showed that 7.2% of the total sequences also belonged to the Leptothrix/Sphaerotilus group. Sorting of individual L. ochracea sheaths, followed by whole genome amplification (WGA) and PCR identified a SSU rRNA sequence that clustered closely with the putative Leptothrix clones and pyrotags. Using these data, a fluorescence in-situ hybridization (FISH) probe, Lepto175, was designed that bound to ensheathed cells. Quantitative use of this probe demonstrated that up to 35% of microbial cells in an actively accreting iron mat were L. ochracea. The SSU rRNA gene of L. ochracea shares 96% homology with its closet cultivated relative, L. cholodnii, This establishes that L. ochracea is indeed related to this group of morphologically similar, filamentous, sheathed microorganisms

    Microbial sulfate reduction and metal attenuation in pH 4 acid mine water

    Get PDF
    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB) were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated metal attenuation are occurring in the pH-4 mine environment. Water-chemistry analyses of the mine water reveal: (1) preferential complexation and precipitation by H2S of Cu and Cd, relative to Zn; (2) stable isotope ratios of 34S/32S and 18O/16O in dissolved SO4 that are 2–3 ‰ heavier in the mine water, relative to those in surface waters; (3) reduction/oxidation conditions and dissolved gas concentrations consistent with conditions to support anaerobic processes such as sulfate reduction. Scanning electron microscope (SEM) analyses of sediment show 1.5-micrometer, spherical ZnS precipitates. Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria. Cultures of sediment from the mine produced dissolved sulfide at pH values near 7 and near 4, forming precipitates of either iron sulfide or elemental sulfur. DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures

    The effect of systematic pediatric care on neonatal mortality and hospitalizations of infants born with oral clefts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cleft lip and/or palate (CL/P) increase mortality and morbidity risks for affected infants especially in less developed countries. This study aimed at assessing the effects of systematic pediatric care on neonatal mortality and hospitalizations of infants with cleft lip and/or palate (CL/P) in South America.</p> <p>Methods</p> <p>The intervention group included live-born infants with isolated or associated CL/P in 47 hospitals between 2003 and 2005. The control group included live-born infants with CL/P between 2001 and 2002 in the same hospitals. The intervention group received systematic pediatric care between the 7<sup>th </sup>and 28<sup>th </sup>day of life. The primary outcomes were mortality between the 7<sup>th </sup>and 28<sup>th </sup>day of life and hospitalization days in this period among survivors adjusted for relevant baseline covariates.</p> <p>Results</p> <p>There were no significant mortality differences between the intervention and control groups. However, surviving infants with associated CL/P in the intervention group had fewer hospitalization days by about six days compared to the associated control group.</p> <p>Conclusions</p> <p>Early systematic pediatric care may significantly reduce neonatal hospitalizations of infants with CL/P and additional birth defects in South America. Given the large healthcare and financial burden of CL/P on affected families and the relatively low cost of systematic pediatric care, improving access to such care may be a cost-effective public policy intervention.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00097149">NCT00097149</a></p

    Geochemistry of Flooded Underground Mine Workings Influenced by Bacterial Sulfate Reduction

    No full text
    Unlike the majority of the water in the flooded mine complex of Butte Montana, which includes the highly acidic Berkeley pit lake, groundwater in the flooded West Camp underground mine workings has a circum-neutral pH and contains at least 8 μM aqueous sulfide. This article examines the geochemistry and stable isotope composition of this unusual H2S-rich mine water, and also discusses problems related to the colorimetric analysis of sulfide in waters that contain FeS(aq) cluster compounds. The West Camp mine pool is maintained at a constant elevation by continuous pumping, with discharge water that contains elevated Mn (90 μM), Fe (16 μM), and As (1.3 μM) but otherwise low metal concentrations. Dissolved inorganic carbon in the mine water is in chemical and isotopic equilibrium with rhodochrosite in the mineralized veins. The mine water is under-saturated with mackinawite and amorphous FeS, but is supersaturated with Cu- and Zn-sulfides. However, voltammetry studies show that much of the dissolved sulfide and ferrous iron are present as FeS(aq) cluster molecules: as a result, the free H2S + HS - concentration of the West Camp water is poorly constrained. Concentrations of dissolved sulfide determined by colorimetry were lower than gravimetric assays obtained by AgNO3 addition, implying that the FeS(aq) clusters are not completely extracted by the Methylene Blue reagent. In contrast, the clusters are quantitatively extracted as Ag2S after addition of AgNO3. Isotopic analysis of co-existing aqueous sulfide and sulfate confirms that the sulfide was produced by sulfate-reducing bacteria (SRB). The H2S-rich mine water is not confined to the immediate vicinity of the extraction well, but is also present in flooded mine shafts up to 3 km away, and in samples bailed from mine shafts at depths up to 300 m below static water level. This illustrates that SRB are well established throughout the southwestern portion of the extensive (&gt;15 km3) Butte flooded mine complex
    corecore