244 research outputs found

    Calcium Carbonate Sedimentation in the Global Ocean: Linkages Between the Neritic and Pelagic Environments

    Get PDF
    Other than fluvial sediment, calcium carbonate (CaCO3) is the greatest source of sediment in the present-day ocean. Interest in carbonate sedimentation extends beyond geologists because the carbonate system involves biologic and geochemicalprocesses. Carbonate production, for example, releases CO2 but its accumulation becomes a major sink for inorganic carbon. Unlike fluvial sediments, modern carbonates accumulate more or less equally in the neritic and pelagic environments. Neritic carbonates (benthic) are characterized by rapid production of (mostly) metastable aragonite and magnesian calcite:pelagic production of (primarily) calcite in the open ocean occurs at much slower rates but overmuch larger areas than does neritic production (Table 1). A global understanding of the production, preservation, and accumulation of calcium carbonate thus necessitates understanding both theneritic and pelagic systems, even though communication between researchers in the two subdisciplines often has been minimal

    Climatic controls on hurricane patterns: A 1200-y near-annual record from Lighthouse Reef, Belize

    Get PDF
    Tropical cyclones (TCs) are powerful agents of destruction, and understanding climatic controls on TC patterns is of great importance. Over timescales of seasons to several decades, relationships among TC track, frequency, intensity and basin-scale climate changes are well documented by instrumental records. Over centuries to millennia, climate-shift influence on TC regimes remains poorly constrained. To better understand these relationships, records from multiple locations of TC strikes spanning millennia with high temporal resolution are required, but such records are rare. Here we report on a highly detailed sedimentary proxy record of paleo-TC strikes from the Blue Hole of Lighthouse Reef, Belize. Our findings provide an important addition to other high-resolution records, which collectively demonstrate that shifts between active and inactive TC regimes have occurred contemporaneously with shifts hemispheric-scale oceanic and atmospheric circulation patterns such as MDR SSTs and NAO mode, rather than with changes in local climate phenomena as has previously been suggested

    Synchroneity of major late Neogene sea level fluctuations and paleoceanographically controlled changes as recorded by two carbonate platforms

    Get PDF
    Shallow-water carbonate systems are reliable recorders of sea level fluctuations and changes in ambient seawater conditions. Drilling results from Ocean Drilling Program (ODP) Legs 133 and 166 indicate that the timing of late Neogene sedimentary breaks triggered by sea level lowerings is synchronous in the sedimentary successions of the Queensland Plateau and the Great Bahama Bank. This synchrony indicates that these sea level changes were eustatic in origin. The carbonate platforms were also affected by contemporary, paleoceanographically controlled fluctuations in carbonate production. Paleoceanographic changes are recorded at 10.7, 3.6, and 1.7–2.0 Ma. At the Queensland Plateau, sea surface temperature shifts are documented by shifts from tropical to temperate carbonates (10.7 Ma) and vice versa (3.6 Ma); the modern tropical platform was established at 2.0–1.8 Ma. At Great Bahama Bank, changes were registered in compositional variations of platform-derived sediment, such as major occurrence of peloids (3.6 Ma) and higher rates of neritic carbonate input (1.7 Ma). The synchroneity of these changes attests to the far-field effects of modifications in the oceanographic circulation on shallow-water, low-latitude carbonate production

    Benthic Foraminiferal response to sea level change in the mixed siliciclastic-carbonate system of southern Ashmore Trough (Gulf of Papua)

    Get PDF
    Ashmore Trough in the western Gulf of Papua (GoP) represents an outstanding modern example of a tropical mixed siliciclastic-carbonate depositional system where significant masses of both river-borne silicates and bank-derived neritic carbonates accumulate. In this study, we examine how benthic foraminiferal populations within Ashmore Trough vary in response to sea level–driven paleoenvironmental changes, particularly organic matter and sediment supply. Two 11.3-m-long piston cores and a trigger core were collected from the slope of Ashmore Trough and dated using radiocarbon and oxygen isotope measurements of planktic foraminifera. Relative abundances, principal component analyses, and cluster analyses of benthic foraminiferal assemblages in sediment samples identify three distinct assemblages whose proportions changed over time. Assemblage 1, with high abundances of Uvigerina peregrina and Bolivina robusta, dominated between ∼83 and 70 ka (early regression); assemblage 2, with high abundances of Globocassidulina subglobosa, dominated between ∼70 and 11 ka (late regression through lowstand and early transgression); and assemblage 3, with high abundances of neritic benthic species such as Planorbulina mediterranensis, dominated from ∼11 ka to the present (late transgression through early highstand). Assemblage 1 represents heightened organic carbon flux or lowered bottom water oxygen concentration, and corresponds to a time of maximum siliciclastic fluxes to the slope with falling sea level. Assemblage 2 reflects lowered organic carbon flux or elevated bottom water oxygen concentration, and corresponds to an interval of lowered siliciclastic fluxes to the slope due to sediment bypass during sea level lowstand. Assemblage 3 signals increased off-shelf delivery of neritic carbonates, likely when carbonate productivity on the outer shelf (Great Barrier Reef) increased significantly when it was reflooded. Benthic foraminiferal assemblages in the sediment sink (slopes of Ashmore Trough) likely respond to the amount and type of sediment supplied from the proximal source (outer GoP shelf)

    Controls on Microbial and Oolitic Carbonate Sedimentation and Stratigraphic Cyclicity Within a Mixed Carbonate-Siliciclastic System: Upper Cambrian Wilberns Formation, Llano Uplift, Mason County, Texas, USA

    Get PDF
    The upper Cambrian Wilberns Formation in central Texas records deposition on a low-gradient shelf within a mixed carbonate–siliciclastic tidal-flat system that changes offshore to subtidal shelf and open-marine oolitic skeletal shoals with large microbial mounds. Siliciclastic sediment is interpreted to have been delivered to the tidal flat by aeolian processes because of the narrow range in grain size and paucity of clay. Tidal influence is dominant as evidenced by reversing currents and desiccation on the tidal flat, and megaripples with reversing current indicators in offshore shoals. Intraclastic conglomerates were deposited in broad channels on the tidal flats during storm surges. Microbialite deposition is interpreted to be controlled by accommodation favouring amalgamated thin biostromes developed in the tidal flat vs. larger mounds with greater synoptic relief in the offshore, and current energy resulting in preferential elongation of offshore mounds in a NE–SW orientation. Intertidal mounds and biostromes grew in the presence of significant siliciclastic flux and trapped it within their structure, whereas offshore large buildups incorporated little siliciclastic component. Oolite and skeletal grainstone formed in tide agitated shoals associated with large subtidal microbial mounds. Storms extensively recycled and redistributed skeletal and oolitic sands from the offshore shoals across the shelf as thin sand sheets. Spatial mixing of siliciclastic and carbonate sediment occurred across the tidal flat and shelf. Low-frequency and intermediate-frequency stratigraphic cycles were driven by shifts in the shoreline and changes in rate of siliciclastic flux in response to relative sea-level fluctuation. Random facies stacking and the lack of metre-scale cyclicity are interpreted to reflect stratigraphic incompleteness and an episodic signal introduced by storms

    Submerged reef terraces in the Maldivian Archipelago (Indian Ocean)

    Get PDF
    Sea-level changes have shaped the world's carbonate platform margins and continental shelves, leaving typical geomorphic imprints, such as drowned reef terraces. In this paper, we present the results of 112 scuba diving transects across seven different Maldivian atolls and one multibeam survey around Malé Island, the capital of Maldives. We report on the occurrence of drowned reef terraces down to 120 m depth. In total, we identified six levels of submerged terraces that we consider as indicative of periods of time with stable or slowly rising sea level that can be attributed either to deceleration of the last deglacial sea-level rise or to Late Quaternary sea-level highstands. We compare our dataset to the depth of reef terraces reported globally, and we discuss the reasons why common global submerged terrace levels are difficult to identify in the field record

    Required but disguised: Environmental signals in limestone-marl alternations

    Get PDF
    The nature of rhythmic carbonate-rich successions such as limestone^marl alternations has been, and still is, subject to controversy. The possibility of an entirely diagenetic origin for the rhythmic calcareous alternations is discarded by most authors. One problem with an entirely diagenetic, self-organized development of limestone^marl alternations is the fact that limestone and marl beds in many examples are laterally continuous over hundreds of meters or even kilometers. In an entirely self-organized system, lateral coupling would be very limited; thus one would expect that, rather than laterally continuous beds, randomly distributed elongate nodules would form. We address the origin of limestone^marl alternations using a computer model that simulates differential diagenesis of rhythmic calcareous successions. The setup uses a cellular automaton model to test whether laterally extensive, rhythmic calcareous alternations could develop from homogeneous sediments in a process of self-organization. Our model is a strong simplification of early diagenesis in fine-grained, partly calcareous sediments. It includes the relevant key mechanisms to the question whether an external trigger is required in order to obtain laterally extensive limestone^ marl alternations. Our model shows that diagenetic self-organization alone is not sufficient to produce laterally extensive, correlatable beds. Although an external control on bedding formation could be considered to have solved the problem as commonly assumed, we here suggest an interesting third possibility: the rhythmic alternations were formed through the interaction of both an external trigger and diagenetic self-organization. In particular we observe that a very limited external trigger, either in time or amplitude, readily forms correlatable beds in our otherwise diagenetic model. Remarkably, the resulting rhythmites often do not mirror the external trigger in a one-to-one fashion and may differ in phase, frequency and number of couplets. Therefore, the interpretation of calcareous rhythmites as a one-to-one archive of climate fluctuations may be misleading. Parameters independent of diagenetic alteration should be considered for unequivocal interpretation

    Anomalous widespread arid events in Asia over the past 550,000 years

    Get PDF
    Records of element ratios obtained from the Maldives Inner Sea sediments provide a detailed view on how the Indian Monsoon System has varied at high-resolution time scales. Here, we present records from International Ocean Discovery Program (IODP) Site U1471 based on a refined chronology through the past 550,000 years. The record's high resolution and a proper approach to set the chronology allowed us to reconstruct changes in the Indian Monsoon System on a scale of anomalies and to verify their relationships with established records from the East Asian Monsoon System. On the basis of Fe/sum and Fe/Si records, it can be demonstrated that the Asia continental aridity tracks sea-level changes, while the intensity of winter monsoon winds responds to changes in Northern Hemisphere summer insolation. Furthermore, the anomalies of continental aridity and intensity of winter monsoon winds at millennial-scale events exhibit power in the precession band, nearly in antiphase with Northern Hemisphere summer insolation. These observations indicate that the insolation drove the anomalies in the Indian Summer Monsoon. The good correspondence between our record and the East Asian monsoon anomaly records suggests the occurrence of anomalous widespread arid events in Asia.info:eu-repo/semantics/publishedVersio

    Quaternary CaCO3 Input and Preservation within Antarctic Intermediate Water Mineralogic and Isotopic Results from Holes 818B and 817A, Townsville Trough (Northeast Australian Margin)

    Get PDF
    The Quaternary history of metastable CaCO3 input and preservation within Antarctic Intermediate Water (AAIW) was examined by studying sediments from ODP Holes 818B (745 mbsl) and 817A (1015 mbsl) drilled in the Townsville Trough on the southern slope of the Queensland Plateau. These sites lie within the core of modern AAIW, and near the aragonite saturation depth (-1000 m). Thus, they are well positioned to monitor chemical changes that may have occurred within this watermass during the past 1.6 m.y. The percent of fine aragonite content, percent of fine magnesian calcite content, and percent of whole pteropods (>355 μm) were used to separate the fine aragonite input signal from the CaCO3 preservation signal. Stable δ 1 8 θ and δ13C isotopic ratios were determined for the planktonic foraminifer Globigerinoides sacculifer and, in Hole 818B, for the benthic foraminifer Cibicidoides spp. to establish the oxygen isotope stratigraphy and to study the relationship between intermediate and shallow water δ13C of Σ C O 2 and the relationship between benthic foraminiferal δ13C and CaCO3 preservation within intermediate waters of the Townsville Trough. Data were converted from depth to age using oxygen isotope stratigraphy, nannostratigraphy, and foraminiferal biostratigraphy. Several long hiatuses and the absence of magnetostratigraphy did not permit time series analysis. The principal results of the CaCO3 preservation study include the following (1) a general increase in CaCO3 preservation between 0.9 and 1.6 Ma; (2) a CaCO3 dissolution maximum near 0.9 Ma, primarily expressed in the Hole 818B fine aragonite record; (3) an abrupt and permanent increase of fine aragonite content between 0.86 and 0.875 Ma in both Holes 818B and 817A probably reflecting a dramatic increase of fine carbonate sediment production on the Queensland Plateau; (4) an improvement in CaCO3 preservation near 0.87 Ma, which accompanied the increase of sediment input, indicated by the first appearance of whole pteropods in the deeper Hole 817A and a "spike" in the percent whole pteropods in Hole 818B; (5) a period of strong CaCO3 dissolution during the mid-Brunhes Chron from 0.36 to 0.41 Ma; and (6) a complex CaCO3 preservation pattern between 0.36 Ma and the present characterized by a general increase in CaCO3 preservation through time with good preservation during interglacial stages and poor preservation during glacial stages. The long-term aragonite preservation histories for Holes 818B and 817A appear to be similar in general shape, although different in detail, to CaCO3 preservation records from the deep Indian and central equatorial Pacific oceans as well as from intermediate water sites in the Bahamas and the Maldives. All of these areas have experienced CaCO3 dissolution at about 0.9 Ma and during the mid-Brunhes Chron. However, the late Quaternary (0 to 0.36 Ma) glacial to interglacial preservation pattern in Holes 818B and 817A is out of phase with CaCO3 preservation records for sediments deposited in Pacific deep and bottom waters. The sharp increase in bank production and export from the Queensland Plateau and the coincident improvement of CaCO3 preservation between 0.86 and 0.875 Ma may have been synchronous with the initiation of the Great Barrier Reef and roughly coincides with an increase in carbonate accumulation on the Bahama banks, in the western North Atlantic Ocean, and on Mururoa atoll, in the central South Pacific Ocean. The development of these reef systems during the middle Quaternary may be related to the transition in the frequency and amplitude of global sea level change from 41 k.y. low amplitude cycles prior to 0.9 Ma to 100 k.y. high amplitude cycles after 0.73 Ma. Carbon isotopic analyses show that benthic foraminiferal δ13C values (Cibicidoides spp.) have been heavier than planktonic foraminiferal δ13C values (G. sacculifer) throughout most of the last 0.54 m.y., which may indicate that 13C-enriched intermediate water (AAIW) occupied the Townsville Trough during much of the late Quaternary. Furthermore, both planktonic and benthic foraminiferal δ13C values are often observed to be heaviest during interglacial to glacial transitions, and lightest during glacial to interglacial transitions. We suggest that this pattern is the result of changes in the preformed δ13C of XCO2 of AAIW and may reflect changes in nutrient utilization by primary producers in Antarctic surface waters, changes in the δ13C of upwelled Circumpolar Deep Water, or changes in the extent and/or temperature of equilibration between surface water and atmospheric CO2 within the Antarctic Polar Frontal Zone (the source area for AAIW). Finally, the poor correlation between percent of whole pteropods (aragonite preservation) and δ13C of Cibicidoides spp. may be the result of a decoupling of δ13C from CO2 due to the numerous and complex variables that combine to produce the preformed δ13C of AAIW
    • …
    corecore