846 research outputs found

    Torsion–rotation global analysis of the first three torsional states (νt = 0, 1, 2) and terahertz database for methanol

    Get PDF
    Stimulated by recent THz measurements of the methanol spectrum in one of our laboratories, undertaken in support of NASA programs related to the Herschel Space Observatory (HSO) and the Atacama Large Millimeter Array (ALMA), we have carried out a global analysis of available microwave and high-resolution infrared data for the first three torsional states (νt = 0, 1, 2), and for J values up to 30. This global fit of approximately 5600 frequency measurements and 19 000 Fourier transform far infrared (FTFIR) wavenumber measurements to 119 parameters reaches the estimated experimental measurement accuracy for the FTFIR transitions, and about twice the estimated experimental measurement accuracy for the microwave, submillimeter-wave, and terahertz transitions. The present fit is essentially a continuation of our earlier work, but we have greatly expanded our previous data set and have added a large number of new torsion–rotation interaction terms to the Hamiltonian in our previously used computer program. The results, together with a number of calculated (but unmeasured) transitions, including their line strength, estimated uncertainty, and lower state energy, are made available in the supplementary material as a database formatted to be useful for astronomical searches. Some discussion of several open spectroscopic problems, e.g., (i) an improved notation for the numerous parameters in the torsion–rotation Hamiltonian, (ii) possible causes of the failure to fit frequency measurements to the estimated measurement uncertainty, and (iii) pitfalls to be avoided when intercomparing apparently identical parameters from the internal axis method and the rho axis method are also given

    Laboratory Characterization and Astrophysical Detection of Vibrationally Excited States of Vinyl Cyanide in Orion-KL

    Get PDF
    New laboratory data of CH2_2CHCN (vinyl cyanide) in its ground and vibrationally excited states at the microwave to THz domain allow searching for these excited state transitions in the Orion-KL line survey. Frequency-modulated spectrometers combined into a single broadband 50-1900 GHz spectrum provided measurements of CH2_2CHCN covering a spectral range of 18-1893 GHz, whose assignments was confirmed by Stark modulation spectra in the 18-40 GHz region and by ab-initio anharmonic force field calculations. For analyzing the emission lines of CH2_2CHCN species detected in Orion-KL we used the excitation and radiative transfer code (MADEX) at LTE conditions. The rotational transitions of the ground state of this molecule emerge from four cloud components of hot core nature which trace the physical and chemical conditions of high mass star forming regions in the Orion-KL Nebula. The total column density of CH2_2CHCN in the ground state is (3.0±\pm0.9)x1015^{15} cm2^{-2}. We report on the first interstellar detection of transitions in the v10=1/(v11=1,v15=1) dyad in space, and in the v11=2 and v11=3 states in Orion-KL. The lowest energy vibrationally excited states of vinyl cyanide such as v11=1 (at 328.5 K), v15=1 (at 478.6 K), v11=2 (at 657.8 K), the v10=1/(v11=1,v15=1) dyad (at 806.4/809.9 K), and v11=3 (at 987.9 K) are populated under warm and dense conditions, so they probe the hottest parts of the Orion-KL source. Column density and rotational and vibrational temperatures for CH2_2CHCN in their ground and excited states, as well as for the isotopologues, have been constrained by means of a sample of more than 1000 lines in this survey. Moreover, we present the detection of methyl isocyanide (CH3_3NC) for the first time in Orion-KL and a tentative detection of vinyl isocyanide (CH2_2CHNC) and give column density ratios between the cyanide and isocyanide isomers.Comment: 46 pages, 22 figures, 14 tables, 9 online table

    THz extended spectrum of the monodeuterated methyl formate (DCOOCH3)

    Get PDF
    Context. Laboratory spectral recordings and an accurate molecular spectral analysis of any potential interstellar molecule are essential for generating a complete spectroscopic line list. This permits predicting the frequencies and intensities of any transition so that subsequently, it can be identified in the interstellar medium. Aims. Our analysis of DCOOCH3 aims to provide a comprehensive spectral catalog that encompasses as much as possible the frequency coverage of the new-generation far-IR and submillimeter wave observation facilities. Methods. We newly measured the rotational spectrum of DCOOCH3 in the laboratory of the Jet Propulsion Laboratory in the frequency range of 0.85 to 1.5 THz. We jointly analyzed the new data with literature data using the rho axis method, which is a tool developed for the spectral analysis of molecules with large-amplitude internal CH3 rotors. Results. We fit 27 spectroscopic constants of DCOOCH3 to 3763 transitions with highest values of J = 69 and Ka = 36 of the ground torsional state with a standard (unitless) deviation of 0.97. With respect to previous work, this is a significantly better result that was obtained with 2060 more transitions, and we also achieved a better accuracy for the new parameter values.This research was supported by the FIS2011-28738-C02-02 project (MINECO, Spain), the French PCMI (Programme National de Physique Chimie du Milieu Interstellaire), and the National Natural Science Foundation of China (Grant No. 11174098). M.C. acknowledges the research stay at the Universite Paris Diderot under the Guest Faculty programme in May 2014. Portions of this paper present research carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Government sponsorship is acknowledged

    Origin of ultradian pulsatility in the hypothalamic–pituitary–adrenal axis

    Get PDF
    The hypothalamic–pituitary–adrenal (HPA) axis is a neuroendocrine system that regulates the circulating levels of vital glucocorticoid hormones. The activity of the HPA axis is characterized not only by a classic circadian rhythm, but also by an ultradian pattern of discrete pulsatile release of glucocorticoids. A number of psychiatric and metabolic diseases are associated with changes in glucocorticoid pulsatility, and it is now clear that glucocorticoid responsive genes respond to these rapid fluctuations in a biologically meaningful way. Theoretical modelling has enabled us to identify and explore potential mechanisms underlying the ultradian activity in this axis, which to date have not been identified successfully. We demonstrate that the combination of delay with feed-forward and feedback loops in the pituitary–adrenal system is sufficient to give rise to ultradian pulsatility in the absence of an ultradian source from a supra-pituitary site. Moreover, our model enables us to predict the different patterns of glucocorticoid release mediated by changes in hypophysial-portal corticotrophin-releasing hormone levels, with results that parallel our experimental in vivo data

    Rotational spectra of isotopic species of methyl cyanide, CH3_3CN, in their ground vibrational states up to terahertz frequencies

    Full text link
    Methyl cyanide is an important trace molecule in star-forming regions. It is one of the more common molecules used to derive kinetic temperatures in such sources. As preparatory work for Herschel, SOFIA, and in particular ALMA we want to improve the rest frequencies of the main as well as minor isotopologs of methyl cyanide. The laboratory rotational spectrum of methyl cyanide in natural isotopic composition has been recorded up to 1.63 THz. Transitions with good signal-to-noise ratio could be identified for CH3_3CN, 13^{13}CH3_3CN, CH313_3^{13}CN, CH3_3C15^{15}N, CH2_2DCN, and 13^{13}CH313_3^{13}CN in their ground vibrational states up to about 1.2 THz. The main isotopic species could be identified even in the highest frequency spectral recordings around 1.6 THz. The highest JJ' quantum numbers included in the fit are 64 for 13^{13}CH313_3^{13}CN and 89 for the main isotopic species. Greatly improved spectroscopic parameters have been obtained by fitting the present data together with previously reported transition frequencies. The present data will be helpful to identify isotopologs of methyl cyanide in the higher frequency bands of instruments such as the recently launched Herschel satellite, the upcoming airplane mission SOFIA or the radio telescope array ALMA.Comment: 13 pages, 2 figures, article appeared; CDMS links update

    Validation of the Aura Microwave Limb Sounder HNOmeasurements

    Get PDF
    We assess the quality of the version 2.2 (v2.2) HNO3 measurements from the Microwave Limb Sounder (MLS) on the Earth Observing System Aura satellite. The MLS HNO3 product has been greatly improved over that in the previous version (v1.5), with smoother profiles, much more realistic behavior at the lowest retrieval levels, and correction of a high bias caused by an error in one of the spectroscopy files used in v1.5 processing. The v2.2 HNO3 data are scientifically useful over the range 215 to 3.2 hPa, with single-profile precision of ∼0.7 ppbv throughout. Vertical resolution is 3–4 km in the upper troposphere and lower stratosphere, degrading to ∼5 km in the middle and upper stratosphere. The impact of various sources of systematic uncertainty has been quantified through a comprehensive set of retrieval simulations. In aggregate, systematic uncertainties are estimated to induce in the v2.2 HNO3 measurements biases that vary with altitude between ±0.5 and ±2 ppbv and multiplicative errors of ±5–15% throughout the stratosphere, rising to ∼±30% at 215 hPa. Consistent with this uncertainty analysis, comparisons with correlative data sets show that relative to HNO3 measurements from ground-based, balloon-borne, and satellite instruments operating in both the infrared and microwave regions of the spectrum, MLS v2.2 HNO3 mixing ratios are uniformly low by 10–30% throughout most of the stratosphere. Comparisons with in situ measurements made from the DC-8 and WB-57 aircraft in the upper troposphere and lowermost stratosphere indicate that the MLS HNO3 values are low in this region as well, but are useful for scientific studies (with appropriate averaging)

    Validation of Aura Microwave Limb Sounder O-3 and CO observations in the upper troposphere and lower stratosphere

    Get PDF
    International audienceGlobal satellite observations of ozone and carbon monoxide from the Microwave Limb Sounder (MLS) on the EOS Aura spacecraft are discussed with emphasis on those observations in the 215–100 hPa region (the upper troposphere and lower stratosphere). The precision, resolution and accuracy of the data produced by the MLS “version 2.2” processing algorithms are discussed and quantified. O3 accuracy is estimated at ~40 ppbv +5% (~20 ppbv +20% at 215 hPa) while the CO accuracy is estimated at ~30 ppbv +30% for pressures of 147 hPa and less. Comparisons with expectations and other observations show good agreements for the O3 product, generally consistent with the systematic errors quoted above. In the case of CO, a persistent factor of ~2 high bias is seen at 215 hPa. However, the morphology is shown to be realistic, consistent with raw MLS radiance data, and useful for scientific study. The MLS CO data at higher altitudes are shown to be consistent with other observations

    Low Multiplicity Burst Search at the Sudbury Neutrino Observatory

    Get PDF
    Results are reported from a search for low-multiplicity neutrino bursts in the Sudbury Neutrino Observatory (SNO). Such bursts could indicate detection of a nearby core-collapse supernova explosion. The data were taken from Phase I (November 1999 - May 2001), when the detector was filled with heavy water, and Phase II (July 2001 - August 2003), when NaCl was added to the target. The search was a blind analysis in which the potential backgrounds were estimated and analysis cuts were developed to eliminate such backgrounds with 90% confidence before the data were examined. The search maintained a greater than 50% detection probability for standard supernovae occurring at a distance of up to 60 kpc for Phase I and up to 70 kpc for Phase II. No low-multiplicity bursts were observed during the data-taking period.Comment: 11 pages, 4 figures, submitted to Ap
    corecore