17 research outputs found

    Rapid Formation of Massive Planetary Cores in a Pressure Bump

    Full text link
    Models of planetary core growth by either planetesimal or pebble accretion are traditionally disconnected from the models of dust evolution and formation of the first gravitationally-bound planetesimals. The state-of-the-art models typically start with massive planetary cores already present. We aim to study the formation and growth of planetary cores in a pressure bump, motivated by the annular structures observed in protoplanetary disks, starting with sub-micron-sized dust grains. We connect the models of dust coagulation and drift, planetesimal formation in the streaming instability, gravitational interactions between planetesimals, pebble accretion, and planet migration, into one uniform framework. We find that planetesimals forming early at the massive end of the size distribution grow quickly dominantly by pebble accretion. These few massive bodies grow on the timescales of ~100 000 years and stir the planetesimals formed later preventing the emergence of further planetary cores. Additionally, a migration trap occurs allowing for retention of the growing cores. Pressure bumps are favourable locations for the emergence and rapid growth of planetary cores by pebble accretion as the dust density and grain size are increased and the pebble accretion onset mass is reduced compared to a smooth-disk model.Comment: 15 pages, 11 figures, accepted by A&

    Origin of isotopic diversity among carbonaceous chondrites

    Full text link
    Carbonaceous chondrites are some of the most primitive meteorites and derive from planetesimals that formed a few million years after the beginning of the solar system. Here, using new and previously published Cr, Ti, and Te isotopic data, we show that carbonaceous chondrites exhibit correlated isotopic variations that can be accounted for by mixing among three major constituents having distinct isotopic compositions, namely refractory inclusions, chondrules, and CI chondrite-like matrix. The abundances of refractory inclusions and chondrules are coupled and systematically decrease with increasing amount of matrix. We propose that these correlated abundance variations reflect trapping of chondrule precursors, including refractory inclusions, in a pressure maximum in the disk, which is likely related to the water ice line and the ultimate formation location of Jupiter. The variable abundance of refractory inclusions/chondrules relative to matrix is the result of their distinct aerodynamical properties resulting in differential delivery rates and their preferential incorporation into chondrite parent bodies during the streaming instability, consistent with the early formation of matrix-poor and the later accretion of matrix-rich carbonaceous chondrites. Our results suggest that chondrules formed locally from isotopically heterogeneous dust aggregates which themselves derive from a wide area of the disk, implying that dust enrichment in a pressure trap was an important step to facilitate the accretion of carbonaceous chondrite parent bodies or, more generally, planetesimals in the outer solar system.Comment: 12 pages, 4 figures, 1 table. Accepted for publication in ApJ

    Planetary population synthesis

    Full text link
    In stellar astrophysics, the technique of population synthesis has been successfully used for several decades. For planets, it is in contrast still a young method which only became important in recent years because of the rapid increase of the number of known extrasolar planets, and the associated growth of statistical observational constraints. With planetary population synthesis, the theory of planet formation and evolution can be put to the test against these constraints. In this review of planetary population synthesis, we first briefly list key observational constraints. Then, the work flow in the method and its two main components are presented, namely global end-to-end models that predict planetary system properties directly from protoplanetary disk properties and probability distributions for these initial conditions. An overview of various population synthesis models in the literature is given. The sub-models for the physical processes considered in global models are described: the evolution of the protoplanetary disk, the planets' accretion of solids and gas, orbital migration, and N-body interactions among concurrently growing protoplanets. Next, typical population synthesis results are illustrated in the form of new syntheses obtained with the latest generation of the Bern model. Planetary formation tracks, the distribution of planets in the mass-distance and radius-distance plane, the planetary mass function, and the distributions of planetary radii, semimajor axes, and luminosities are shown, linked to underlying physical processes, and compared with their observational counterparts. We finish by highlighting the most important predictions made by population synthesis models and discuss the lessons learned from these predictions - both those later observationally confirmed and those rejected.Comment: 47 pages, 12 figures. Invited review accepted for publication in the 'Handbook of Exoplanets', planet formation section, section editor: Ralph Pudritz, Springer reference works, Juan Antonio Belmonte and Hans Deeg, Ed

    Transcriptome-wide analysis of alternative routes for RNA substrates into the exosome complex

    Get PDF
    <div><p>The RNA exosome complex functions in both the accurate processing and rapid degradation of many classes of RNA. Functional and structural analyses indicate that RNA can either be threaded through the central channel of the exosome or more directly access the active sites of the ribonucleases Rrp44 and Rrp6, but it was unclear how many substrates follow each pathway <i>in vivo</i>. We used CRAC (UV crosslinking and analysis of cDNA) in growing cells to identify transcriptome-wide interactions of RNAs with the major nuclear exosome-cofactor Mtr4 and with individual exosome subunits (Rrp6, Csl4, Rrp41 and Rrp44) along the threaded RNA path. We compared exosome complexes lacking Rrp44 exonuclease activity, carrying a mutation in the Rrp44 S1 RNA-binding domain predicted to disfavor direct access, or with multiple mutations in Rrp41 reported to impede RNA access to the central channel <i>in vitro</i>. Preferential use of channel-threading was seen for mRNAs, 5S rRNA, scR1 (SRP) and aborted tRNAs transcripts. Conversely, pre-tRNAs preferentially accessed Rrp44 directly. Both routes participated in degradation and maturation of RNAPI transcripts, with hand-over during processing. Rrp41 mutations blocked substrate passage through the channel to Rrp44 only for cytoplasmic mRNAs, supporting the predicted widening of the lumen in the Rrp6-associated, nuclear complex. Many exosome substrates exhibited clear preferences for a specific path to Rrp44. Other targets showed redundancy, possibly allowing the efficient handling of highly diverse RNA-protein complexes and RNA structures. Both threading and direct access routes involve the RNA helicase Mtr4. mRNAs that are predominately nuclear or cytoplasmic exosome substrates can be distinguished <i>in vivo</i>.</p></div

    How dust fragmentation may be beneficial to planetary growth by pebble accretion

    No full text
    Context. Pebble accretion is an emerging paradigm for the fast growth of planetary cores. Pebble flux and pebble sizes are the key parameters used in the pebble accretion models. Aims. We aim to derive the pebble sizes and fluxes from state-of-the-art dust coagulation models and to understand their dependence on disk parameters and the fragmentation threshold velocity, and the impact of those on planetary growth by pebble accretion. Methods. We used a 1D dust evolution model including dust growth and fragmentation to calculate realistic pebble sizes and mass flux. We used this information to integrate the growth of planetary embryos placed at various locations in the protoplanetary disk. Results. Pebble flux strongly depends on disk properties including size and turbulence level, as well as the dust aggregates’ fragmentation threshold. We find that dust fragmentation may be beneficial to planetary growth in multiple ways. First of all, it prevents the solids from growing to very large sizes, at which point the efficiency of pebble accretion drops. What is more, small pebbles are depleted at a lower rate, providing a long-lasting pebble flux. As the full coagulation models are computationally expensive, we provide a simple method of estimating pebble sizes and flux in any protoplanetary disk model without substructure and with any fragmentation threshold velocity

    Projekt konstrukcji manipulatora rehabilitacyjnego uwzględniającego ruch osi obrotu stawu kolanowego

    No full text
    Celem pracy było zaprojektowanie i wykonanie prototypu manipulatora rehabilitacyjnego stawu kolanowego o jednym stopniu swobody, który uwzględnia ruch osi w stawie kolanowym. Manipulator ten ma być wykorzystywany do rehabilitacji dzieci w wieku od 6 do 18 lat, u których prowadzone jest wydłużanie kości udowej za pomocą aparatu Ilizarowa. W trakcie realizacji projektu opracowano i przetestowano metody opisu trajektorii ruchu w stawie kolanowym. Zaprojektowano i wykonano wstępną konstrukcję manipulatora rehabilitacyjnego uwzględniającego ruch osi obrotu stawu kolanowego.The aim of the study was to design of the knee rehabilitation manipulator with one degree of freedom, which takes into account the movement of the axis of the knee. The manipulator is to be used for the rehabilitation of children aged 6 to 18 years, who conducted the femoral lengthening using the Ilizarov apparatus. During the project were developed and tested methods of description of the motion trajectory of the knee. Designed and manufactured preliminary rehabilitation manipulator structure that takes into account the movement of the axis of rotation of the knee

    Origin of Isotopic Diversity among Carbonaceous Chondrites

    No full text
    Carbonaceous chondrites are some of the most primitive meteorites and derive from planetesimals that formed a few million years after the beginning of the solar system. Here, using new and previously published Cr, Ti, and Te isotopic data, we show that carbonaceous chondrites exhibit correlated isotopic variations that can be accounted for by mixing among three major constituents having distinct isotopic compositions, namely refractory inclusions, chondrules, and CI chondrite-like matrix. The abundances of refractory inclusions and chondrules are coupled and systematically decrease with increasing amount of matrix. We propose that these correlated abundance variations reflect trapping of chondrule precursors, including refractory inclusions, in a pressure maximum in the disk, which is likely related to the water ice line and the ultimate formation location of Jupiter. The variable abundance of refractory inclusions/chondrules relative to matrix is the result of their distinct aerodynamical properties resulting in differential delivery rates and their preferential incorporation into chondrite parent bodies during the streaming instability, consistent with the early formation of matrix-poor and the later accretion of matrix-rich carbonaceous chondrites. Our results suggest that chondrules formed locally from isotopically heterogeneous dust aggregates, which themselves derive from a wide area of the disk, implying that dust enrichment in a pressure trap was an important step to facilitate the accretion of carbonaceous chondrite parent bodies or, more generally, planetesimals in the outer solar system

    Replication Data for: Origin of Isotopic Diversity among Carbonaceous Chondrites

    No full text
    Carbonaceous chondrites are some of the most primitive meteorites and derive from planetesimals that formed a few million years after the beginning of the solar system. Here, using new and previously published Cr, Ti, and Te isotopic data, we show that carbonaceous chondrites exhibit correlated isotopic variations that can be accounted for by mixing among three major constituents having distinct isotopic compositions, namely refractory inclusions, chondrules, and CI chondrite-like matrix. The abundances of refractory inclusions and chondrules are coupled and systematically decrease with increasing amount of matrix. We propose that these correlated abundance variations reflect trapping of chondrule precursors, including refractory inclusions, in a pressure maximum in the disk, which is likely related to the water ice line and the ultimate formation location of Jupiter. The variable abundance of refractory inclusions/chondrules relative to matrix is the result of their distinct aerodynamical properties resulting in differential delivery rates and their preferential incorporation into chondrite parent bodies during the streaming instability, consistent with the early formation of matrix-poor and the later accretion of matrix-rich carbonaceous chondrites. Our results suggest that chondrules formed locally from isotopically heterogeneous dust aggregates, which themselves derive from a wide area of the disk, implying that dust enrichment in a pressure trap was an important step to facilitate the accretion of carbonaceous chondrite parent bodies or, more generally, planetesimals in the outer solar system

    A candidate super-Earth planet orbiting near the snow line of Barnard’s star

    Get PDF
    Barnard’s star is a red dwarf, and has the largest proper motion (apparent motion across the sky) of all known stars. At a distance of 1.8 parsecs1, it is the closest single star to the Sun; only the three stars in the α Centauri system are closer. Barnard’s star is also among the least magnetically active red dwarfs known2,3 and has an estimated age older than the Solar System. Its properties make it a prime target for planetary searches; various techniques with different sensitivity limits have been used previously, including radial-velocity imaging4,5,6, astrometry7,8 and direct imaging9, but all ultimately led to negative or null results. Here we combine numerous measurements from high-precision radial-velocity instruments, revealing the presence of a low-amplitude periodic signal with a period of 233 days. Independent photometric and spectroscopic monitoring, as well as an analysis of instrumental systematic effects, suggest that this signal is best explained as arising from a planetary companion. The candidate planet around Barnard’s star is a cold super-Earth, with a minimum mass of 3.2 times that of Earth, orbiting near its snow line (the minimum distance from the star at which volatile compounds could condense). The combination of all radial-velocity datasets spanning 20 years of measurements additionally reveals a long-term modulation that could arise from a stellar magnetic-activity cycle or from a more distant planetary object. Because of its proximity to the Sun, the candidate planet has a maximum angular separation of 220 milliarcseconds from Barnard’s star, making it an excellent target for direct imaging and astrometric observations in the future
    corecore