288 research outputs found

    Mercury Methylation Potentials in Sediments of an Ancient Cypress Wetland Using Species-Specific Isotope Dilution GC-ICP-MS

    Get PDF
    Wetlands are of a considerable environmental value as they provide food and habitat for plants and animals. Several important chemical transformations take place in wetland media, including the conversion of inorganic mercury (Hg) to monomethylmercury (MeHg), a toxic compound with a strong tendency for bioconcentration. Considering the fact that wetlands are hotspots for Hg methylation, we investigated, for the first time, Hg methylation and demethylation rates in an old growth cypress wetland at Sky Lake in the Mississippi Delta. The Sky Lake ecosystem undergoes large-scale water level fluctuations causing alternating periods of oxic and anoxic conditions in the sediment. These oscillating redox conditions, in turn, can influence the transformation, speciation, and bioavailability of Hg. In the present study, sediment cores from the wetland and Sky Lake itself were spiked with enriched stable isotope tracers of inorganic Hg and MeHg and allowed to incubate (in-situ) before freezing, sectioning, and analysis. Methylation rates (day−1) ranged from 0.012 ± 0.003 to 0.054 ± 0.019, with the lowest rate in the winter and the highest in the summer. Demethylation rates were about two orders of magnitude higher, and also greater in the warmer seasons (e.g., 1.84 ± 0.78 and 4.63 ± 0.51 for wetland sediment in the winter and summer, respectively). Methylation rates were generally higher in the open water sediment compared to wetland sediment, with the latter shaded and cooler. Both methylation (r = 0.76, p = 0.034) and demethylation (0.97, p = 0.016) rates (day−1) were positively correlated with temperature, but not with most other water quality parameters. MeHg concentration in the water was correlated with pH (r = 0.80, p \u3c 0.05), but methylation rates were only marginally correlated (r = 0.71). Environmental factors driving microbial production of MeHg in the system include warm temperatures, high levels of labile natural organic matter, and to a lesser extent the relatively low pH and the residence time of the water. This study also provides baseline data that can be used to quantify the impacts of modifying the natural flow of water to the system on Hg methylation and demethylation rates

    Catalytic Promiscuity of Transaminases : Preparation of Enantioenriched β-Fluoroamines by Formal Tandem Hydrodefluorination/Deamination

    Get PDF
    Transaminases are valuable enzymes for industrial biocatalysis and enable the preparation of optically pure amines. For these transformations they require either an amine donor (amination of ketones) or an amine acceptor (deamination of racemic amines). Herein transaminases are shown to react with aromatic β-fluoroamines, thus leading to simultaneous enantioselective dehalogenation and deamination to form the corresponding acetophenone derivatives in the absence of an amine acceptor. A series of racemic β-fluoroamines was resolved in a kinetic resolution by tandem hydrodefluorination/deamination, thus giving the corresponding amines with up to greater than 99 % ee. This protocol is the first example of exploiting the catalytic promiscuity of transaminases as a tool for novel transformations

    Solvent-free anhydrous Li+, Na+ and K+ salts of [B(3,5-(CF3)2C6H3)4]-, [BArF4]-. Improved synthesis and solid-state structures

    Get PDF
    A modified, convenient, preparation of solvent-free, anhydrous, Li+, Na+ and K+ salts of the ubiquitous [BArF4]- anion is reported, that involves a simple additional recrystallisation step. Anhydrous Na[BArF4], K[BArF4], and [Li(H2O)][BArF4], were characterised by single-crystal X-ray diffraction

    Isolating fluorinated carbocations

    Full text link
    Using carboranes as counterions, fluorinated benzyl-type carbocations such as (p-FC(6)H(4))(2)CF(+), (p-FC(6)H(4))(CH(3))CF(+) and fluorinated trityl ions are readily isolated for X-ray and IR structural characterization

    The rapid formation of functional monolayers on silicon under mild conditions

    Get PDF
    We report on an exceedingly mild chemical functionalization of hydrogen-terminated Si(100) with unactivated and unprotected bifunctional α,ω-dialkynes. Monolayer formation occurs rapidly in the dark, and at room temperature, from dilute solutions of an aromatic-conjugated acetylene. The method addresses the poor reactivity of p-type substrates under mild conditions. We suggest the importance of several factors, including an optimal orientation for electron transfer between the adsorbate and the Si surface, conjugation of the acetylenic function with a π-system, as well as the choice of a solvent system that favors electron transfer and screens Coulombic interactions between surface holes and electrons. The passivated Si(100) electrode is amenable to further functionalization and shown to be a viable model system for redox studies at non-oxide semiconductor electrodes in aqueous solutions

    Below the 12-vertex: 10-vertex carborane anions as non-corrosive, halide free, electrolytes for rechargeable Mg batteries

    Full text link
    The development of practical Mg based batteries is limited by the lack of a library of suitable electrolytes. Recently a 12-vertex closo-carborane anion based electrolyte has been shown to be the first electrolyte for Mg based batteries, which is both non-corrosive and has high electrochemical stability (+3.5 V vs. Mg0/2+). Herein we show that smaller 10-vertex closo-carborane anions also enable electrolytes for Mg batteries. Reduction of the trimethylammonium cation of [HNMe31+][HCB9H91-] with elemental Mg yields the novel magnesium electrolyte [Mg2+][HCB9H91-]2. The electrolyte displays excellent electrochemical stability, is non-nucleophilic, reversibly deposits and strips Mg, and is halide free. This discovery paves the way for the development of libraries of Mg electrolytes based on more cost effective 10-vertex closo-carborane anions
    • …
    corecore