50 research outputs found

    The SuperFGD Prototype charged particle beam tests

    Get PDF
    A novel scintillator detector, the SuperFGD, has been selected as the main neutrino target for an upgrade of the T2K experiment ND280 near detector. The detector design will allow nearly 4π coverage for neutrino interactions at the near detector and will provide lower energy thresholds, significantly reducing systematic errors for the experiment. The SuperFGD is made of optically-isolated scintillator cubes of size 10×10×10 mm3, providing the required spatial and energy resolution to reduce systematic uncertainties for future T2K runs. The SuperFGD for T2K will have close to two million cubes in a 1920 × 560 × 1840 mm3 volume. A prototype made of 24 × 8 × 48 cubes was tested at a charged particle beamline at the CERN PS facility. The SuperFGD Prototype was instrumented with readout electronics similar to the future implementation for T2K . Results on electronics and detector response are reported in this paper, along with a discussion of the 3D reconstruction capabilities of this type of detector. Several physics analyses with the prototype data are also discussed, including a study of stopping protons

    Measurements of the νμ\nu_{\mu} and νˉμ\bar{\nu}_{\mu}-induced Coherent Charged Pion Production Cross Sections on 12C^{12}C by the T2K experiment

    Get PDF
    We report an updated measurement of the νμ\nu_{\mu}-induced, and the first measurement of the νˉμ\bar{\nu}_{\mu}-induced coherent charged pion production cross section on 12C^{12}C nuclei in the T2K experiment. This is measured in a restricted region of the final-state phase space for which pμ,π>0.2p_{\mu,\pi} > 0.2 GeV, cos(θμ)>0.8\cos(\theta_{\mu}) > 0.8 and cos(θπ)>0.6\cos(\theta_{\pi}) > 0.6, and at a mean (anti)neutrino energy of 0.85 GeV using the T2K near detector. The measured νμ\nu_{\mu} CC coherent pion production flux-averaged cross section on 12C^{12}C is (2.98±0.37(stat.)±0.31(syst.)+0.490.00(Q2model))×1040 cm2(2.98 \pm 0.37 (stat.) \pm 0.31 (syst.) \substack{ +0.49 \\ -0.00 } \mathrm{ (Q^2\,model)}) \times 10^{-40}~\mathrm{cm}^{2}. The new measurement of the νˉμ\bar{\nu}_{\mu}-induced cross section on 12C^{12}{C} is (3.05±0.71(stat.)±0.39(syst.)+0.740.00(Q2model))×1040 cm2(3.05 \pm 0.71 (stat.) \pm 0.39 (syst.) \substack{ +0.74 \\ -0.00 } \mathrm{(Q^2\,model)}) \times 10^{-40}~\mathrm{cm}^{2}. The results are compatible with both the NEUT 5.4.0 Berger-Sehgal (2009) and GENIE 2.8.0 Rein-Sehgal (2007) model predictions

    Measurements of the νμ and ν¯μ -induced coherent charged pion production cross sections on C12 by the T2K experiment

    Get PDF
    We report an updated measurement of the ν μ -induced, and the first measurement of the ¯ ν μ -induced coherent charged pion production cross section on 12 C nuclei in the Tokai-to-Kamioka experiment. This is measured in a restricted region of the final-state phase space for which p μ , π > 0.2     GeV , cos ( θ μ ) > 0.8 and cos ( θ π ) > 0.6 , and at a mean (anti)neutrino energy of 0.85 GeV using the T2K near detector. The measured ν μ charged current coherent pion production flux-averaged cross section on 12 C is ( 2.98 ± 0.37 ( stat ) ± 0.31 ( syst ) + 0.49 − 0.00 ( Q 2   model ) ) × 10 − 40     cm 2 . The new measurement of the ¯ ν μ -induced cross section on 12 C is ( 3.05 ± 0.71 ( stat ) ± 0.39 ( syst ) + 0.74 − 0.00 ( Q 2   model ) ) × 10 − 40     cm 2 . The results are compatible with both the NEUT 5.4.0 Berger-Sehgal (2009) and GENIE 2.8.0 Rein-Sehgal (2007) model predictions

    Scintillator ageing of the T2K near detectors from 2010 to 2021

    Get PDF
    The T2K experiment widely uses plastic scintillator as a target for neutrino interactions and an active medium for the measurement of charged particles produced in neutrino interactions at its near detector complex. Over 10 years of operation the measured light yield recorded by the scintillator based subsystems has been observed to degrade by 0.9–2.2% per year. Extrapolation of the degradation rate through to 2040 indicates the recorded light yield should remain above the lower threshold used by the current reconstruction algorithms for all subsystems. This will allow the near detectors to continue contributing to important physics measurements during the T2K-II and Hyper-Kamiokande eras. Additionally, work to disentangle the degradation of the plastic scintillator and wavelength shifting fibres shows that the reduction in light yield can be attributed to the ageing of the plastic scintillator. The long component of the attenuation length of the wavelength shifting fibres was observed to degrade by 1.3–5.4% per year, while the short component of the attenuation length did not show any conclusive degradation

    The SuperFGD Prototype charged particle beam tests

    No full text
    A novel scintillator detector, the SuperFGD, has been selected as the main neutrino target for an upgrade of the T2K experiment ND280 near detector. The detector design will allow nearly 47r coverage for neutrino interactions at the near detector and will provide lower energy thresholds, significantly reducing systematic errors for the experiment. The SuperFGD is made of optically-isolated scintillator cubes of size 10 x 10 x 10 mm(3), providing the required spatial and energy resolution to reduce systematic uncertainties for future T2K runs. The SuperFGD for T2K will have close to two million cubes in a 1920 x 560 x 1840 mm(3) volume. A prototype made of 24 x 8 x 48 cubes was tested at a charged particle beamline at the CERN PS facility. The SuperFGD Prototype was instrumented with readout electronics similar to the future implementation for T2K. Results on electronics and detector response are reported in this paper, along with a discussion of the 3D reconstruction capabilities of this type of detector. Several physics analyses with the prototype data are also discussed, including a study of stopping protons.ISSN:1748-022

    Baby MIND Readout Electronics Architecture for Accelerator Neutrino Particle Physics Detectors Employing Silicon Photomultipliers

    No full text
    The Baby MIND neutrino particle detector was installed at J-PARC in Tokai Japan in February 2018 and commissioned with first neutrino beam a few weeks later. It is instrumented with 3,996 Hamamatsu MPPCs type S12571-025C. A full readout electronics chain was developed to extract energy deposition and timing information of tracks left by charged particles from neutrino interactions in the Baby MIND and surrounding structures. Data from particle beam tests at CERN and commissioning at J-PARC are presented, to illustrate how the electronics readout architecture fulfills the physics requirements. A brief description of the adoption of this architecture for planned 60,000 MPPCs of a new 3D fine grained scintillator detector for operation at J-PARC from 2021 is given

    The SuperFGD Prototype charged particle beam tests

    No full text
    A novel scintillator detector, the SuperFGD, has been selected as the main neutrino target for an upgrade of the T2K experiment ND280 near detector. The detector design will allow nearly 47r coverage for neutrino interactions at the near detector and will provide lower energy thresholds, significantly reducing systematic errors for the experiment. The SuperFGD is made of optically-isolated scintillator cubes of size 10 x 10 x 10 mm(3), providing the required spatial and energy resolution to reduce systematic uncertainties for future T2K runs. The SuperFGD for T2K will have close to two million cubes in a 1920 x 560 x 1840 mm(3) volume. A prototype made of 24 x 8 x 48 cubes was tested at a charged particle beamline at the CERN PS facility. The SuperFGD Prototype was instrumented with readout electronics similar to the future implementation for T2K. Results on electronics and detector response are reported in this paper, along with a discussion of the 3D reconstruction capabilities of this type of detector. Several physics analyses with the prototype data are also discussed, including a study of stopping protons

    Total neutron cross-section measurement on CH with a novel 3D-projection scintillator detector

    No full text
    In order to extract neutrino oscillation parameters, long-baseline neutrino oscillation experiments rely on detailed models of neutrino interactions with nuclei. These models constitute an important source of systematic uncertainty, partially because detectors to date have been blind to final state neutrons. Three-dimensional projection scintillator trackers comprise components of the near detectors of the next generation long-baseline neutrino experiments. Due to the good timing resolution and fine granularity, this technology is capable of measuring neutron kinetic energy in neutrino interactions on an event-by-event basis and will provide valuable data for refining neutrino interaction models and ways to reconstruct neutrino energy. Two prototypes have been exposed to the neutron beamline at Los Alamos National Laboratory (LANL) in both 2019 and 2020, with neutron energies between 0 and 800 MeV. In order to demonstrate the capability of neutron detection, the total neutron-scintillator cross section as a function of neutron energy is measured and compared to external measurements. The measured total neutron cross section in scintillator between 98 and 688 MeV is 0.36 ± 0.05 barn.In order to extract neutrino oscillation parameters, precision long-baseline neutrino oscillation experiments rely on detailed models of neutrino interactions with nuclei. These models constitute an important source of systematic uncertainty, partially because detectors to date have been blind to final state neutrons. Three-dimensional projection scintillator trackers comprise components of the near detectors of the next generation long-baseline neutrino experiments. Due to the good timing resolution and fine granularity, this technology is capable of measuring neutron kinetic energy in neutrino interactions on an event-by-event basis and will provide valuable data for refining neutrino interaction models and ways to reconstruct neutrino energy. Two prototypes have been exposed to the neutron beamline at Los Alamos National Laboratory (LANL) in both 2019 and 2020, with neutron energies between 0 and 800 MeV. In order to demonstrate the capability of neutron detection, the total neutron-scintillator cross section is measured and compared to external measurements. The measured total neutron cross section in scintillator between 98 and 688 MeV is 0.36 ±\pm 0.05 barn

    SuperFGD prototype time resolution studies

    No full text
    The SuperFGD will be a part of the ND280 near detector of the T2K and Hyper Kamiokande projects, that will help to reduce systematic uncertainties related with neutrino flux and cross-section modeling. The upgraded ND280 will be able to perform a full exclusive reconstruction of the final state from neutrino-nucleus interactions, including measurements of low momentum protons, pions and, for the first time, event-by event measurements of neutron kinematics. The time resolution defines the neutron energy resolution. We present the results of time resolution measurements made with the SuperFGD prototype that consists of 9216 plastic scintillator cubes (cube size is 1 cm3^3) readout with 1728 wavelength-shifting fibers going along three orthogonal directions. We use data from the muon beam exposure at CERN. The time resolution of 0.97 ns was obtained for one readout channel after implementing the time calibration with a correction for the time-walk effect. The time resolution improves with energy deposited in a scintillator cube. Averaging two readout channels for one scintillator cube improves the time resolution to 0.68 ns which means that signals in different channels are not synchronous. Therefore the contribution from the time recording step of 2.5 ns is averaged as well. Averaging time values from N channels improves the time resolution by 1/N\sim 1/\sqrt{N}. Therefore a very good time resolution should be achievable for neutrons since neutron recoils hit typically several scintillator cubes and in addition produce larger amplitudes than muons. Measurements performed with a laser and a wide-bandwidth oscilloscope demonstrated that the time resolution obtained with the muon beam is not far from its expected limit. The intrinsic time resolution of one channel is 0.67 ns for signals of 56 photo-electron typical for minimum ionizing particles

    SuperFGD prototype time resolution studies

    No full text
    The SuperFGD will be a part of the ND280 near detector of the T2K and Hyper Kamiokande projects, that will help to reduce systematic uncertainties related with neutrino flux and cross-section modeling. The upgraded ND280 will be able to perform a full exclusive reconstruction of the final state from neutrino-nucleus interactions, including measurements of low momentum protons, pions and, for the first time, event-by event measurements of neutron kinematics. The time resolution defines the neutron energy resolution. We present the results of time resolution measurements made with the SuperFGD prototype that consists of 9216 plastic scintillator cubes (cube size is 1 cm3^3) readout with 1728 wavelength-shifting fibers going along three orthogonal directions. We use data from the muon beam exposure at CERN. The time resolution of 0.97 ns was obtained for one readout channel after implementing the time calibration with a correction for the time-walk effect. The time resolution improves with energy deposited in a scintillator cube. Averaging two readout channels for one scintillator cube improves the time resolution to 0.68 ns which means that signals in different channels are not synchronous. Therefore the contribution from the time recording step of 2.5 ns is averaged as well. Averaging time values from N channels improves the time resolution by 1/N\sim 1/\sqrt{N}. Therefore a very good time resolution should be achievable for neutrons since neutron recoils hit typically several scintillator cubes and in addition produce larger amplitudes than muons. Measurements performed with a laser and a wide-bandwidth oscilloscope demonstrated that the time resolution obtained with the muon beam is not far from its expected limit. The intrinsic time resolution of one channel is 0.67 ns for signals of 56 photo-electron typical for minimum ionizing particles
    corecore