49 research outputs found

    Use of a pLDH-based dipstick in the diagnostic and therapeutic follow-up of malaria patients in Mali

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria is a major public health problem in Mali and diagnosis is typically based on microscopy. Microscopy requires a well trained technician, a reliable power source, a functioning microscope and adequate supplies. The scarcity of resources of community health centres (CHC) does not allow for such a significant investment in only one aspect of malaria control. In this context, Rapid Diagnostic Tests (RDTs) may improve case management particularly in remote areas.</p> <p>Methods</p> <p>This multicentre study included 725 patients simultaneously screened with OptiMal-IT test and thick smears for malaria parasite detection. While evaluating the therapeutic efficacy of choroquine in 2 study sites, we compared the diagnostic values of thick smear microscopy to OptiMal-IT test applying the WHO 14 days follow-up scheme using samples collected from 344 patients.</p> <p>Results</p> <p>The sensitivity and the specificity of OptiMal-IT compared to thick smear was 97.2% and 95.4%, whereas the positive and negative predictive values were 96.7 and 96.1%, respectively. The percent agreement between the two diagnostic tests was 0.93. The two tests were comparable in detecting malaria at day 0, day 3 and day 14. The only difference was observed at day 7 due to high gametocytemia. Subjectively, health care providers found OptiMal-IT easier to use and store under field conditions.</p> <p>Conclusion</p> <p>OptiMal-IT test revealed similar results when compared to microscopy which is considered the gold standard for malaria diagnostics. The test was found to have a short processing time and was easier to use. These advantages may improve malaria case management by providing a diagnostic and drug efficacy follow-up tool to peripheral health centres with limited resources.</p

    Memory CD8 + T cell compartment associated with delayed onset of Plasmodium falciparum infection and better parasite control in sickle‐cell trait children

    Get PDF
    Study of individuals with protection from Plasmodium falciparum (Pf) infection and clinical malaria, including individuals affected by the sickle-cell trait (HbAS), offers the potential to identify cellular targets that could be translated for therapeutic development. We previously reported the first involvement of cellular immunity in HbAS-associated relative protection and identified a novel subset of memory-activated NK cells that was enriched in HbAS children and associated with parasite control. We hypothesised that other memory cell subsets might distinguish the baseline profile of HbAS children and children with normal haemoglobin (HbAA). Subsets of memory T cells and NK cells were analysed by flow cytometry in paired samples collected from HbAS and HbAA children, at baseline and during the first malaria episode of the ensuing transmission season. Correlations between cell frequencies and features of HbAS-mediated protection from malaria were determined. HbAS children displayed significantly higher frequency of memory CD8+ T cells at baseline than HbAA children. Baseline frequency of memory CD8+ T cells correlated with features of HbAS-mediated protection from malaria. Exploration of memory CD8+ T cell subsets revealed that central memory CD8+ T cell frequency was higher in HbAS children than in HbAA children. This study shows that HbAS children develop a larger memory CD8+ T cell compartment than HbAA children, and associates this compartment with better control of subsequent onset of infection and parasite density. Our data suggest that central memory CD8+ T cells may play an important role in the relative protection against malaria experienced by HbAS individuals, and further work to investigate this is warranted

    The Plasmodium falciparum-Specific Human Memory B Cell Compartment Expands Gradually with Repeated Malaria Infections

    Get PDF
    Immunity to Plasmodium falciparum (Pf) malaria is only acquired after years of repeated infections and wanes rapidly without ongoing parasite exposure. Antibodies are central to malaria immunity, yet little is known about the B-cell biology that underlies the inefficient acquisition of Pf-specific humoral immunity. This year-long prospective study in Mali of 185 individuals aged 2 to 25 years shows that Pf-specific memory B-cells and antibodies are acquired gradually in a stepwise fashion over years of repeated Pf exposure. Both Pf-specific memory B cells and antibody titers increased after acute malaria and then, after six months of decreased Pf exposure, contracted to a point slightly higher than pre-infection levels. This inefficient, stepwise expansion of both the Pf-specific memory B-cell and long-lived antibody compartments depends on Pf exposure rather than age, based on the comparator response to tetanus vaccination that was efficient and stable. These observations lend new insights into the cellular basis of the delayed acquisition of malaria immunity

    Plasmodium falciparum transcription in different clinical presentations of malaria associates with circulation time of infected erythrocytes

    Get PDF
    Following Plasmodium falciparum infection, individuals can remain asymptomatic, present with mild fever in uncomplicated malaria cases, or show one or more severe malaria symptoms. Several studies have investigated associations between parasite transcription and clinical severity, but no broad conclusions have yet been drawn. Here, we apply a series of bioinformatic approaches based on P. falciparum’s tightly regulated transcriptional pattern during its ~48-hour intraerythrocytic developmental cycle (IDC) to publicly available transcriptomes of parasites obtained from malaria cases of differing clinical severity across multiple studies. Our analysis shows that within each IDC, the circulation time of infected erythrocytes without sequestering to endothelial cells decreases with increasing parasitaemia or disease severity. Accordingly, we find that the size of circulating infected erythrocytes is inversely related to parasite density and disease severity. We propose that enhanced dhesiveness of infected erythrocytes leads to a rapid increase in parasite burden, promoting higher parasitaemia and increased disease severity

    Increased circulation time of Plasmodium falciparum underlies persistent asymptomatic infection in the dry season

    Get PDF
    The dry season is a major challenge for Plasmodium falciparum parasites in many malaria endemic regions, where water availability limits mosquito vectors to only part of the year. How P. falciparum bridges two transmission seasons months apart, without being cleared by the human host or compromising host survival, is poorly understood. Here we show that low levels of P. falciparum parasites persist in the blood of asymptomatic Malian individuals during the 5- to 6-month dry season, rarely causing symptoms and minimally affecting the host immune response. Parasites isolated during the dry season are transcriptionally distinct from those of individuals with febrile malaria in the transmission season, coinciding with longer circulation within each replicative cycle of parasitized erythrocytes without adhering to the vascular endothelium. Low parasite levels during the dry season are not due to impaired replication but rather to increased splenic clearance of longer-circulating infected erythrocytes, which likely maintain parasitemias below clinical and immunological radar. We propose that P. falciparum virulence in areas of seasonal malaria transmission is regulated so that the parasite decreases its endothelial binding capacity, allowing increased splenic clearance and enabling several months of subclinical parasite persistence

    Dermatophytosis among Schoolchildren in Three Eco-climatic Zones of Mali

    Get PDF
    International audienceBACKGROUND:Dermatophytosis, and particularly the subtype tinea capitis, is common among African children; however, the risk factors associated with this condition are poorly understood. To describe the epidemiology of dermatophytosis in distinct eco-climatic zones, three cross-sectional surveys were conducted in public primary schools located in the Sahelian, Sudanian and Sudano-Guinean eco-climatic zones in Mali.PRINCIPAL FINDINGS:Among 590 children (average age 9.7 years) the overall clinical prevalence of tinea capitis was 39.3%. Tinea capitis prevalence was 59.5% in the Sudano-Guinean zone, 41.6% in the Sudanian zone and 17% in the Sahelian eco-climatic zone. Microsporum audouinii was isolated primarily from large and/or microsporic lesions. Trichophyton soudanense was primarily isolated from trichophytic lesions. Based on the multivariate analysis, tinea capitis was independently associated with male gender (OR = 2.51, 95%CI [1.74-3.61], P<10-4) and residing in the Sudano-Guinean eco-climatic zone (OR = 7.45, 95%CI [4.63-11.99], P<10-4). Two anthropophilic dermatophytes species, Trichophyton soudanense and Microsporum audouinii, were the most frequent species associated with tinea capitis among primary schoolchildren in Mali.CONCLUSIONS:Tinea capitis risk increased with increasing climate humidity in this relatively homogenous schoolchild population in Mali, which suggests a significant role of climatic factors in the epidemiology of dermatophytosis
    corecore