20 research outputs found

    Submillimeter absorption from SH+, a new widespread interstellar radical, 13CH+ and HCl

    Full text link
    We have used the Atacama Pathfinder Experiment 12 m telescope (APEX) to carry out an absorption study of submillimeter wavelength rotational ground-state lines of H35Cl, H37Cl, 13CH+, and, for the first time, of the SH+ radical (sulfoniumylidene or sulfanylium). We detected the quartet of ground-state hyperfine structure lines of SH+ near 683 GHz with the CHAMP+ array receiver against the strong continuum source Sagittarius B2, which is located close to the center of our Galaxy. In addition to absorption from various kinematic components of Galactic center gas, we also see absorption at the radial velocities belonging to intervening spiral arms. This demonstrates that SH+ is a ubiquitous component of the diffuse interstellar medium. We do not find clear evidence for other SH+ lines we searched for, which is partially due to blending with lines from other molecules. In addition to SH+, we observed absorption from H35Cl, H37Cl, and 13CH+. The observed submillimeter absorption is compared in detail with absorption in 3 mm transitions of H13CO+ and c-C3H2 and the CO J = 1-0 and 3-2 transitions.Comment: 17 pages, 9 figure

    The Science Performance of JWST as Characterized in Commissioning

    Get PDF
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment

    Get PDF

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    An update on the use of transdermal oxybutynin in the management of overactive bladder disorder

    No full text
    Antimuscarinic medications are used to treat nonneurogenic overactive bladder refractory to nonpharmacologic therapy. Side effects such as dry mouth, constipation, blurred vision, dizziness, and impaired cognition limit the tolerability of therapy and are largely responsible for high discontinuation rates. Oxybutynin is a potent muscarinic receptor antagonist whose primary metabolite after first-pass hepatic metabolism is considered largely responsible for its associated anticholinergic side effects. Transdermal administration of medications bypasses hepatic processing. Specifically with oxybutynin, whose low molecular weight permits transdermal administration, bioavailability of the parent drug with oral administration is less than 10%, whereas with transdermal delivery is a minimum of 80%. The result has been an improved side effect profile in multiple clinical trials with maintained efficacy relative to placebo; however, the drug may still be discontinued by patients due to anticholinergic side effects and application site reactions. Transdermal oxybutynin is available as a patch that is changed every 3–4 days, a gel available in individual sachets, or via a metered-dose pump that is applied daily. The transdermal patch was briefly available as an over-the-counter medication for adult women, although at this time all transdermal formulations are available by prescription only
    corecore