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ABSTRACT 
 
The Origins Space Telescope (OST) mission concept study is the subject of one of the four science and technology 
definition studies supported by NASA Headquarters to prepare for the 2020 Astronomy and Astrophysics Decadal 

Space Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave, edited by Makenzie Lystrup, 
Howard A. MacEwen, Giovanni G. Fazio, Proc. of SPIE Vol. 10698, 106980N  
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Survey. OST  will survey the most distant galaxies to discern the rise of metals and dust and to unveil the co-evolution of 
galaxy and blackhole formation, study the Milky Way to follow the path of water from the interstellar medium to 
habitable worlds in planetary systems, and measure biosignatures from exoplanets.  This paper describes the science 
drivers and how they drove key requirements for OST Mission Concept 2, which will operate between ~5 and ~600 
microns with a JWST sized telescope. Mission Concept 2 for  the OST study optimizes the engineering for the key 
science cases into a powerful and more economical observatory compared to Mission Concept 1. 
 

1. INTRODUCTION 
 
 
The Origins Space Telescope (OST) is a large mission concept study for the NASA 2020 Astronomy and 
Astrophysics Decadal Study.  In our 2016 SPIE paper1, we described our science and technology ideas for the Far-
Infrared (Far-IR) Surveyor,  the mission study name given by the 2013 NASA Astrophysics Roadmap, Enduring 
Quests, Daring Visions2 and used in the first community report.3  Our first science exercise for the Science and 
Technology Definition Team (STDT) involved a community driven science proposals to determine the most 
scientifically compelling questions for the 2030s.   The NASA selected STDT members voted on the proposals and 
the top 14 were used to deicide on architecture, large aperture telescope or interferometer.  The resulting large 
aperture telescope became OST Mission Concept 1’s 9.1 m telescope,  with 5 powerful instruments covering the 5 
to 660 μm  and capable of addressing all the science questions posed by the community.  One of the science 
questions,  searching for biosignatures from habitable zone exoplanets transiting M dwarfs, was ranked in the top 3 
and extended the wavelength range to include the 5-28 μm window.  The Far-Infrared Surveyor no longer described 
the mission.  Through an internal team renaming competition, we selected  Origins Space Telescope (OST) to 
capture and focus the attention on the science themes that extend from the first stars to life.  The OST Mission 
Concept 1 is described in the interim report that will become public this summer 20184.  At this 2018 SPIE,  we are 
presenting for the first time Mission Concept 2.  
 
The goal of our OST mission concept study is a large astronomy mission concept capable of exciting science that is 
technologically executable in the 2030s.  Both the science definition and the technical implementation are important 
to the study.  In this paper, we provide a brief overview of the OST Mission Concept 2  in section 2.   In sections 3, 
4 and 5 of the paper we describe the science drivers for some key observatory requirements that are defining 
Mission Concept 2.  We end in section 6 with a summary and plan for completion of the final report due to NASA 
HQ in 2019. 
 
 

2. OST MISSION CONCEPT 2 OVERVIEW 
 
 
Mission Concept 2 for  the OST study   (Figure 1) optimizes the engineering for the key science cases into a 
powerful and more economical observatory compared to Mission Concept 1.5   The telescope has a JWST size 
collecting area,  ~25 m2, and segmented with keystone shaped segments resulting in a circular aperture.5,6,7  The 
telescope has a diffraction limit of 30 μm and covers the wavelength range of ~5 to ~620 μm. The telescope and 
instruments are kept cold  at ~4 K and the specific instrument detectors are cooled to lower temperatures.8,9 The 
observatory can move fast, up to 100 arcseconds per second, and the detectors can keep up with the fast motion 
resulting in impressive  surveying  capabilities.  The observatory would be launched in one of three large rockets 
under development,  NASA SLS 8.4 m, SpaceX Big Falcon Rocket and Blue Origins New Glenn.  The space in the 
large rockets allows the observatory to be launched with minimal deployment (sunshields, and the usual 
deployments like solar panels). 
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Figure 1:  The OST Mission Concept 2, conceptual design.  The light path shown in blue rays.   

Mission Concept 2 has at most four optimized instruments.  Astronomers view point for instruments and the 
observatory is the instrument focal plane (Figure 2) that is used to plan observations. The instruments are discussed 
in detail in other contributions of this conference and we only briefly cover their capabilities here. The Far-infrared 
Imager and Polarimeter  (FIP)10 does broad band imaging at 50, 100, 250 and 500 μm, two wavebands in parallel at 
a time, over large angular areas.  FIP also does polarimetric imaging in the bands.  The Mid-infrared Imager, 
Spectrometer and Coronagraph (MISC)11, which operates between 5 and 28 μm,  has an ultra-stable spectrometer 
channel built to do exoplanet transits with high precision12 (smaller MISC field of view).  The MISC imager (larger 
field of view) serves both as a science imager and a guider for the observatory.  The OST Survey Spectrometer 
(OSS)13 can survey the sky over its whole wavelength range of  25 and 590 μm  with low resolution spectroscopy 
with R (λ/Δλ) of ~300.  OSS has two higher spectral resolution modes: a fourier transform spectrometer (FTS) with 
R~43,000 at 112 μm  and an etalon  with R~325,000 at 112 μm .  The Heterodyne Receiver for OST  (HERO)14 uses 
an array of 9 coherent detectors over the wavelength range of 111 to 617 μm to achieve the highest spectral 
resolutions of R~106 to 107 for measurements of simultaneous  spectral lines. 

 

 
Figure 2:  The astronomers view of the Origins Space Telescope Mission Concept 2,  the field of view focal plane.   In 
clockwise order, the instruments are the Far-infrared Imager and Polarimeter  (FIP, brown box), the Mid-Infrared, 
Spectrometer and Camera (MISC, Imager is large yellow box and small yellow box is the transit spectrometer), the OST 
Survey Spectrometer (OSS, long pink slit) and the Heterodyne Receiver for OST  (HERO, green box).  
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The JWST Mid-InfraRed Instrument (MIRI) spectrometers (LRS and MRS) will produce many, highly significant break 
throughs for astronomers.  However, exoplanet transit science was just starting when the requirements and development 
of MIRI were set,  and the MIRI spectrometers were not required to achieve nor designed for the highly demanding bio-
signature transit science we propose. This important science goal drives the following requirements for OST: 
 
1. Telescope size:  25 m2 collecting area (JWST size), 5.9 m diameter 
2. Wavelength coverage:  4-25 μm  
3. High stability mid-IR spectroscopy:  5 ppm,  R~300 (MISC transit spectrometer) 
 
The collecting area is set both by simulations of anticipated data and by anticipating that JWST collecting area for transit 
work will set an expectation for astronomers for this work.  The wavelength coverage is set by the wavelengths of the 
key bio-signatures and bio-indicators. OST will be colder increasing the sensitivity at the longer wavelength range over 
JWST and the increased in stability of the instrument, requirement #3 above, is the real gain over prior instruments.    
 
The exoplanet team on OST have simulated TRAPPIST-1e-like transmission and emission spectra for both JWST 
MIRI/LRS and  OST MISC transit channel (Figure 4 a and b). During primary transit, the planet is detected passing in 
front of its host star  and a transmission spectrum is obtained. During conjunction or secondary eclipse, when a planet 
passes behind its host star, OST will measure the planet’s thermal emission, i.e. emission spectrum. The emission from a 
planet in the habitable zone, as well as the planet-to-star flux ratio, peaks in the mid-infrared. The assumptions for the 
simulation include 100 visits and the M dwarf  is reasonably bright with a K (2.12 micron) magnitude of 8.  Based on 
documentation of expected MIRI/LRS performance, the optimistic noise is 30 parts per million (ppm).  For OST/MISC 
transit channel, we set a requirement of 5 ppm necessary to measure the bio-signatures. 
 
The key technology development for the MISC transit channel is stable detectors with reasonable size format so that the 
spectra can be calibrated to 5 ppm,  which is very demanding. 

 
 

 
Figure 4a:  The simulated  TRAPPIST-1e-like transmission spectrum assuming 100 visits.  Comparing JWST MIRI/LRS with 
the OST MISC transit channel. 

Transmission
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Figure 4b: The simulated  TRAPPIST-1e-like emission spectrum assuming 100 visits.  Comparing JWST MIRI/LRS with the 
OST MISC transit channel. 

 

 
4. HOW DID WE GET HERE? 

 
We know there is life in the Universe, because Earth is teaming with it.    So an equally compelling question is, “How 
did we get here?”   OST will unveil the whole story of the  origins of  habitable planetary systems by following the trail 
of water  and gas from the cold interstellar medium, through the formation of the stars  to  the resulting proto-planetary 
disk forming planets.  Prior work with observatories such as the Herschel Space Observatory16,  reveal water and gas in 
a few proto-planetary disks. OST will enable large statistical samples of disks required to bring true understanding.  
 
The OST will specifically address the question: “How do the conditions for habitability develop during the process of 
planet formation?”  The spectral range of OSS covers the whole spectrum of water lines and the key gas mass tracer,  
112 μm HD  line. (Figure 5).  Astronomers will use the OSS to  survey the  water (179 μm H2O line) and measure the 
total gas mass (112 μm HD  line) in 1000 planet-forming disks around stars of all masses and evolutionary stages out to 
the distance of Orion. Using high resolution spectroscopy available with OSS and HERO,  astronomers will measure the 
distribution of water and gas mass in 200 disks selected from the survey. 
 
Figure 6  shows an artistic model of  a protoplanetary disk undergoing the planetary system formation process. 
The gas mass content of the disks can be measured with the HD 112 μm line.  The dust content of these protoplanetary 
disks has been extensively studied using the Spitzer Space Telescope17  and the warm dust will also be explored with 
JWST.  However, the bulk of the disk mass is in the form of gas, and most of it is located in the cold outter disk. OST’s 
long wavelength coverage  is required to measure the bulk of the disk gas.  The life supporting water of a disk is in the 
form of ice or gas and the OST spectrometers will be capable of measuring both.  Using the highest spectral resolution of 
the OST spectrometers, OSS and HERO,  we can use the technic of Doppler tomography to determine the location of the 
water vapor in the disk.  The material in the disk will follow Keplerian rotation and hence the slower material will reside 

Emission 
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in the outer part of the disk compared with the faster moving  gas in the inner disk.  Thus, OST’s OSS and HERO 
spectroscopy will define the total water content of the disk and its location.   

Key technical requirements to support this case include: 
1. Wavelength coverage  28-200  μm for survey (OSS), 28-540 μm  for followup (HERO)
2. Spectral line sensitivity sensitivity:  1.0 × 10-21 W m-2   at 112 and 179 μm (OSS)
3. Spectral resolving power:  43,000 for survey and 200,000 for followup (OSS, HERO)

Figure 5:  A model spectrum of a proto-planetary disk  showing the water lines and other important gas lines (such as HD 112 
μm) that are accessed by the spectral coverage of the OSS instrument. 

Figure 6:  A schematic of a proto-planetary disk undergoing planetary system formation.  Most of the water in the form of ice 
or vapor exists in the outside of the disk, where as the habitability zone is closer to 1 AU.  How is the water transported? Noted 
in the diagram are the locations in the disk of the HD line which traces disk gas mass, OI to measure oxygen abundance , and 
one of the water lines.  Only the long wavelengths of OST can access the outside disk. 
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ALMA that is needed to form a complete understanding of galaxy evolution (Figure 8).   The OST OSS spectrometer is 
specifically designed to capitalize on this wavelength range allowing spectral surveys of deep fields. 

Figure 8:  A schematic plot of observed wavelength vs. redshift for galaxy spectral energy distributions show that OST fills 
in a critical wavelength gap between JWST and ALMA.  The white line galaxy spectral energy distribution is one of a 
nearby galaxy with both active star formation and an active galactic nuclei (AGN).  The colored spectral lines trace the 
activity of star formation (blue), feedback from star formation or AGN  (green)  and AGN (red).   

The OST is designed for fast mapping of the sky in part because of the detectors functioning and in part because the 
confusion limit of this highly sensitive telescope is reached in seconds with FIP. The significantly improved image 
quality over prior missions (Figure 9) will enable better identification of counterparts. Large area surveys of the sky are 
becoming the mainstay of galaxy evolution and large scale structure of the universe research with LSST, Euclid and 
WFIRST coming online.  OST with FIP will complement these studies by providing the longer wavelength 
measurements that measure the interstellar medium of the galaxy thereby creating large samples of galaxies for 
significant statistical study.  Moreover, the large area surveys of 2000 deg2 will reveal the rarer, most luminous galaxies 
for study. 

These extragalactic surveys levy several requirements on the instruments and observatory: 
1. Wavelength coverage  5-28  μm (MISC), 25-590 μm (OSS), 50, 100, 250 and 500 μm (FIP)
2. Spectral line sensitivity :  5.0 × 10-21 W m-2 @ 150 μm (OSS)
3. Spectral resolving power:  300 for spectral survey and 20,000 for followup (OSS)
4. Fast mapping, survey speed:   100 arcseconds  per second

Several of these are repeats from the proto-planetary disks science.  However, the fast mapping speed is new and enables 
large area sky surveys which differentiates it from JWST.   The key technology development for this science  is far-
infrared  direct detectors for sensitivity. 

Proc. of SPIE Vol. 10698  106980N-9
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 09 Jul 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



.

.i
..

.
. -'

.

.

.¡
'

.

.

0.
L

_.4

w

w

:'`.
'
.

.r

..-

,

a':

Ì
1--

.
1

.
.

!
.
 
_

-

'
_

.
-

-V
F .

IY
41.

o.
''

..
se

.

.

'.
:

!
.

; ..
a

i
'4

.
.

,

:
'

-
-

Figure 9:  Comparison of a simulated deep galaxy field  as imaged with Spitzer/MIPS  and OST/FIP.  The field of view is 
5.25’x5.25’.   

6. FUTURE

The OST mission concept 2 will be complete its engineering study this summer 2018. The OST 
decadal study will submit its final report for NASA HQ in winter 2019.  These final reports will be 
delivered to the National Academy in summer 2019 by NASA HQ.   Our OST study is an open 
process and the community is welcomed to join us.  If this paper makes you curious about us,  then 
please join us.   To learn more about us, visit our outreach website at origins.ipac.caltech.edu or if 
you want to listen in on our telecons, visit the project website  
asd.gsfc.nasa.gov/firs/. 
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