123 research outputs found

    Anthropogenic supply of nutrients in a wildlife reserve may compromise conservation success

    Full text link
    In nutrient-poor wildlife reserves it has become common-practice to provide supplemental mineral resources for wildlife. Yet, the impacts of anthropogenic mineral supplementation on large herbivore nutrition, behaviour, and subsequent impact on ecosystem processes have received little attention. Here, we examine the contribution of anthropogenic mineral lick provision to wildlife nutrient intake across a community of mammalian herbivores (>10 kg) in the southern Kalahari Desert. Based on predicted daily nutrient intake and a faecal nutrient assessment, many large herbivore species appear deficient in phosphorus (P), sodium (Na), or zinc (Zn). For these nutrients, anthropogenic salt and mineral licks constitute an important source of nutrient intake helping to reduce or overcome requirement deficits. Larger-bodied species disproportionately consumed licks, acquiring more nutritional benefits. A comprehensive assessment of animal body condition indicated that, in general, large herbivores display good health. However, bulk grazers, non-ruminants and females displayed poorer body condition. We discuss how provisioning of anthropogenic mineral licks may inflate large herbivore populations beyond the long-term carrying capacity of the reserve by decoupling wildlife fecundity from nutrient-related feedbacks on population growth. Over time, this could compromise ecosystem integrity through habitat degradation, modified species interactions and trophic cascades. Based on results presented here, it is clear that anthropogenic provisioning of mineral licks should be considered cautiously by wildlife managers aiming to conserve natural processes in landscapes

    A comparison of plot-based satellite and Earth system model estimates of tropical forest net primary production

    Get PDF
    Net primary production (NPP) by plants represents the largest annual flux of carbon dioxide (CO2) from the atmosphere to the terrestrial biosphere, playing a critical role in the global carbon (C) cycle and the Earth’s climate. Rates of NPP in tropical forests are thought to be among the highest on Earth, but debates about the magnitude, patterns, and controls of NPP in the tropics highlight uncertainty in our understanding of how tropical forests may respond to environmental change. Here, we compared tropical NPP estimates generated using three common approaches: (1) field-based methods scaled from plot-level measurements of plant biomass, (2) radiation-based methods that model NPP from satellite-derived radiation absorption by plants, (3) and biogeochemical model-based methods. For undisturbed tropical forests as a whole, the three methods produced similar NPP estimates (i.e. about 10 Pg C yr1). However, the three different approaches produced vastly different patterns of NPP both in space and through time, suggesting that our understanding of tropical NPP is poor and that our ability to predict the response of NPP in the tropics to environmental change is limited. To address this shortcoming, we suggest the development of an expanded, high-density, permanent network of sites where NPP is continuously evaluated using multiple approaches. Well-designed NPP megatransects that include a high-density plot network would significantly increase the accuracy and certainty in the observed rates and patterns of tropical NPP and improve the reliability of Earth system models used to predict NPP–carbon cycle–climate interactions into the futur

    One-year outcomes after transcatheter insertion of an interatrial shunt device for the management of heart failure with preserved ejection fraction

    Get PDF
    Background—Heart failure with preserved ejection fraction has a complex pathophysiology and remains a therapeutic challenge. Elevated left atrial pressure, particularly during exercise, is a key contributor to morbidity and mortality. Preliminary analyses have demonstrated that a novel interatrial septal shunt device that allows shunting to reduce the left atrial pressure provides clinical and hemodynamic benefit at 6 months. Given the chronicity of heart failure with preserved ejection fraction, evidence of longer-term benefit is required. Methods and Results—Patients (n=64) with left ventricular ejection fraction ≄40%, New York Heart Association class II–IV, elevated pulmonary capillary wedge pressure (≄15 mm Hg at rest or ≄25 mm Hg during supine bicycle exercise) participated in the open-label study of the interatrial septal shunt device. One year after interatrial septal shunt device implantation, there were sustained improvements in New York Heart Association class (P<0.001), quality of life (Minnesota Living with Heart Failure score, P<0.001), and 6-minute walk distance (P<0.01). Echocardiography showed a small, stable reduction in left ventricular end-diastolic volume index (P<0.001), with a concomitant small stable increase in the right ventricular end-diastolic volume index (P<0.001). Invasive hemodynamic studies performed in a subset of patients demonstrated a sustained reduction in the workload corrected exercise pulmonary capillary wedge pressure (P<0.01). Survival at 1 year was 95%, and there was no evidence of device-related complications. Conclusions—These results provide evidence of safety and sustained clinical benefit in heart failure with preserved ejection fraction patients 1 year after interatrial septal shunt device implantation. Randomized, blinded studies are underway to confirm these observations

    Exploring the influence of ancient and historic megaherbivore extirpations on the global methane budget

    Get PDF
    Globally, large-bodied wild mammals are in peril. Because “megamammals” have a disproportionate influence on vegetation, trophic interactions, and ecosystem function, declining populations are of considerable conservation concern. However, this is not new; trophic downgrading occurred in the past, including the African rinderpest epizootic of the 1890s, the massive Great Plains bison kill-off in the 1860s, and the terminal Pleistocene extinction of megafauna. Examining the consequences of these earlier events yields insights into contemporary ecosystem function. Here, we focus on changes inmethane emissions, produced as a byproduct of enteric fermentation by herbivores. Although methane is ∌200 times less abundant than carbon dioxide in the atmosphere, the greater efficiency of methane in trapping radiation leads to a significant role in radiative forcing of climate. Using global datasets of late Quaternary mammals, domestic livestock, and human population from the United Nations as well as literature sources, we develop a series of allometric regressions relating mammal body mass to population density and CH4 production, which allows estimation of methane production by wild and domestic herbivores for each historic or ancient time period. We find the extirpation ofmegaherbivores reduced global enteric emissions between 2.2–69.6 Tg CH4 y−1 during the various time periods, representing a decrease of 0.8–34.8% of the overall inputs to tropospheric input. Our analyses suggest that large-bodied mammals have a greater influence on methane emissions than previously appreciated and, further, that changes in the source pool from herbivores can influence global biogeochemical cycles and, potentially, climate

    Megafauna extinction, tree species range reduction, and carbon storage in Amazonian forests

    Get PDF
    During the Late Pleistocene and early Holocene 59 species of South American megafauna went extinct. Their extinction potentially triggered population declines of large-seeded tree species dispersed by the large-bodied frugivores with which they co-evolved, a theory first proposed by Janzen and Martin (1982). We tested this hypothesis using species range maps for 257 South American tree species, comparing 63 species thought to be primarily distributed by megafauna with 194 distributed by other animals. We found a highly significant (p 95% following disperser extinction. A numerical gap dynamic simulations suggests that over a 10 000 yr period following the disperser extinctions, the average convex hull range size of large-seeded tree species decreased by ∌ 31%, while the estimated decrease in population size was ∌ 54%, indicating a likely greater decrease in species population size than indicated by the empirical range patterns. Finally, we found a positive correlation between seed size and wood density of animal-dispersed tree species implying that the Late Pleistocene and early Holocene megafaunal extinctions reduced carbon content in the Amazon by ∌ 1.5 ± 0.7%. In conclusion, we 1) provide some empirical evidence that megafauna distributed fruit species have a smaller mean range size than wind, water or other animal-dispersed species, 2) demonstrate mathematically that such range reductions are expected from megafauna extinctions ca 12 000 yr ago, and 3) illustrate that these extinctions may have reduced the Amazon's carbon storage capacity

    Seasonal trends of Amazonian rainforest phenology, net primary productivity, and carbon allocation.:Seasonal trends of Amazonian forests.

    Get PDF
    The seasonality of solar irradiance and precipitation may regulate seasonal variations in tropical forests carbon cycling. Controversy remains over their importance as drivers of seasonal dynamics of net primary productivity in tropical forests. We use ground data from nine lowland Amazonian forest plots collected over 3 years to quantify the monthly primary productivity (NPP) of leaves, reproductive material, woody material, and fine roots over an annual cycle. We distinguish between forests that do not experience substantial seasonal moisture stress (“humid sites”) and forests that experience a stronger dry season (“dry sites”). We find that forests from both precipitation regimes maximize leaf NPP over the drier season, with a peak in production in August at both humid (mean 0.39 ± 0.03 Mg C ha−1 month−1 in July, n = 4) and dry sites (mean 0.49 ± 0.03 Mg C ha−1 month−1 in September, n = 8). We identify two distinct seasonal carbon allocation patterns (the allocation of NPP to a specific organ such as wood leaves or fine roots divided by total NPP). The forests monitored in the present study show evidence of either (i) constant allocation to roots and a seasonal trade-off between leaf and woody material or (ii) constant allocation to wood and a seasonal trade-off between roots and leaves. Finally, we find strong evidence of synchronized flowering at the end of the dry season in both precipitation regimes. Flower production reaches a maximum of 0.047 ± 0.013 and 0.031 ± 0.004 Mg C ha−1 month−1 in November, in humid and dry sites, respectively. Fruitfall production was staggered throughout the year, probably reflecting the high variation in varying times to development and loss of fruit among species

    Using multiscale lidar to determine variation in canopy structure from African forest elephant trails

    Get PDF
    Recently classified as a unique species by the IUCN, African forest elephants (Loxodonta cyclotis) are critically endangered due to severe poaching. With limited knowledge about their ecological role due to the dense tropical forests they inhabit in central Africa, it is unclear how the Afrotropics are influenced by elephants. Although their role as seed dispersers is well known, they may also drive large-scale processes that determine forest structure through the creation of elephant trails and browsing the understory, allowing larger, carbon-dense trees to succeed. Multiple scales of lidar were collected by NASA in LopĂ© National Park, Gabon from 2015 to 2022. Utilizing two airborne lidar datasets in an African forest elephant stronghold, detailed canopy structural information was used in conjunction with elephant trail data to determine how forest structure varies on and off trails. Forest along elephant trails displayed different structural characteristics than forested areas off trails, with lower canopy height, canopy cover, and different vertical distribution of plant density. Less plant area density was found on trails at 1 m in height, while more vegetation was found at 12 m, compared to off trail locations. Trails in forest areas with previous logging history had lower plant area in the top of the canopy. Forest elephants can be considered as “logging light” ecosystem engineers, affecting canopy structure through browsing and movement. Both airborne lidar scales were able to capture elephant impact along trails, with the high-resolution discrete return lidar performing higher than waveform lidar

    Drought impact on forest carbon dynamics and fluxes in Amazonia

    Get PDF
    In 2005 and 2010 the Amazon basin experienced two strong droughts, driven by shifts in the tropical hydrological regime possibly associated with global climate change, as predicted by some global models. Tree mortality increased after the 2005 drought, and regional atmospheric inversion modelling showed basin-wide decreases in CO2 uptake in 2010 compared with 2011 (ref. 5). But the response of tropical forest carbon cycling to these droughts is not fully understood and there has been no detailed multi-site investigation in situ. Here we use several years of data from a network of thirteen 1-ha forest plots spread throughout South America, where each component of net primary production (NPP), autotrophic respiration and heterotrophic respiration is measured separately, to develop a better mechanistic understanding of the impact of the 2010 drought on the Amazon forest. We find that total NPP remained constant throughout the drought. However, towards the end of the drought, autotrophic respiration, especially in roots and stems, declined significantly compared with measurements in 2009 made in the absence of drought, with extended decreases in autotrophic respiration in the three driest plots. In the year after the drought, total NPP remained constant but the allocation of carbon shifted towards canopy NPP and away from fine-root NPP. Both leaf-level and plot-level measurements indicate that severe drought suppresses photosynthesis. Scaling these measurements to the entire Amazon basin with rainfall data, we estimate that drought suppressed Amazon-wide photosynthesis in 2010 by 0.38 petagrams of carbon (0.23-0.53 petagrams of carbon). Overall, we find that during this drought, instead of reducing total NPP, trees prioritized growth by reducing autotrophic respiration that was unrelated to growth. This suggests that trees decrease investment in tissue maintenance and defence, in line with eco-evolutionary theories that trees are competitively disadvantaged in the absence of growth. We propose that weakened maintenance and defence investment may, in turn, cause the increase in post-drought tree mortality observed at our plots.Gordon and Betty Moore FoundationNatural Environment Research Council (NERC)EU FP7 Amazalert (282664) projectEU FP7GEOCARBON (283080) projectNational Council for Scientific and Technological Development (CNPq, Brazil)ARC - fellowship awardERC - Advanced Investigator AwardRoyal Society - Wolfson Research Merit AwardJackson FoundationJohn Fell Fun
    • 

    corecore