73 research outputs found
Testing the binary hypothesis for the formation and shaping of planetary nebulae
There is no quantitative theory to explain why a high 80% of all planetary
nebulae are non-spherical. The Binary Hypothesis states that a companion to the
progenitor of a central star of planetary nebula is required to shape the
nebula and even for a planetary nebula to be formed at all. A way to test this
hypothesis is to estimate the binary fraction of central stars of planetary
nebulae and to compare it with that of the main sequence population.
Preliminary results from photometric variability and the infrared excess
techniques indicate that the binary fraction of central stars of planetary
nebulae is higher than that of the main sequence, implying that PNe could
preferentially form via a binary channel. This article briefly reviews these
results and current studies aiming to refine the binary fraction.Comment: EUROWD12 Proceeding
Planetary nebulae : getting closer to an unbiased binary fraction
Why 80% of planetary nebulae are not spherical is not yet understood. The
Binary Hypothesis states that a companion to the progenitor of the central star
of a planetary nebula is required to shape the nebula and even for a planetary
nebula to be formed at all. A way to test this hypothesis is to estimate the
binary fraction of central stars of planetary nebula and to compare it with the
main sequence population. Preliminary results from photometric variability and
infrared excess techniques indicate that the binary fraction of central stars
of planetary nebulae is higher than that of the putative main sequence
progenitor population, implying that PNe could be preferentially formed via a
binary channel. This article briefly reviews these results and future studies
aiming to refine the binary fraction.Comment: SF2A 2012 proceeding
The planetary nebula Abell 48 and its [WN] nucleus
We have conducted a detailed multi-wavelength study of the peculiar nebula
Abell 48 and its central star. We classify the nucleus as a helium-rich,
hydrogen-deficient star of type [WN4-5]. The evidence for either a massive WN
or a low-mass [WN] interpretation is critically examined, and we firmly
conclude that Abell 48 is a planetary nebula (PN) around an evolved low-mass
star, rather than a Population I ejecta nebula. Importantly, the surrounding
nebula has a morphology typical of PNe, and is not enriched in nitrogen, and
thus not the `peeled atmosphere' of a massive star. We estimate a distance of
1.6 kpc and a reddening, E(B-V) = 1.90 mag, the latter value clearly showing
the nebula lies on the near side of the Galactic bar, and cannot be a massive
WN star. The ionized mass (~0.3 M_Sun) and electron density (700 cm^-3) are
typical of middle-aged PNe. The observed stellar spectrum was compared to a
grid of models from the Potsdam Wolf-Rayet (PoWR) grid. The best fit
temperature is 71 kK, and the atmospheric composition is dominated by helium
with an upper limit on the hydrogen abundance of 10 per cent. Our results are
in very good agreement with the recent study of Todt et al., who determined a
hydrogen fraction of 10 per cent and an unusually large nitrogen fraction of ~5
per cent. This fraction is higher than any other low-mass H-deficient star, and
is not readily explained by current post-AGB models. We give a discussion of
the implications of this discovery for the late-stage evolution of
intermediate-mass stars. There is now tentative evidence for two distinct
helium-dominated post-AGB lineages, separate to the helium and carbon dominated
surface compositions produced by a late thermal pulse. Further theoretical work
is needed to explain these recent discoveries.Comment: 19 pages, 10 figures, to appear in MNRAS. Version 3 incorporates
proof correction
Neutron Star Structure and the Neutron Radius of 208Pb
We study relationships between the neutron-rich skin of a heavy nucleus and
the properties of neutron-star crusts. Relativistic effective field theories
with a thicker neutron skin in Pb have a larger electron fraction and a
lower liquid-to-solid transition density for neutron-rich matter. These
properties are determined by the density dependence of the symmetry energy
which we vary by adding nonlinear couplings between isoscalar and isovector
mesons. An accurate measurement of the neutron radius in Pb---via
parity violating electron scattering---may have important implications for the
structure of neutron stars.Comment: 5 pages 3 figures, added additional evidence of model independence,
Phys. Rev. Letters in pres
Impact of the nuclear equation of state on the last orbits of binary neutron stars
We present calculations of quasiequilibrium sequences of irrotational binary
neutron stars based on realistic equations of state (EOS) for the whole neutron
star interior. Three realistic nuclear EOSs of various softness and based on
different microscopic models have been joined with a recent realistic EOS of
the crust, giving in this way three different EOSs of neutron-star interior.
Computations of quasiequilibrium sequences are performed within the
Isenberg-Wilson-Mathews approximation to general relativity. For all
evolutionary sequences, the innermost stable circular orbit (ISCO) is found to
be given by mass-shedding limit (Roche lobe overflow). The EOS dependence on
the last orbits is found to be quite important: for two 1.35 M_sol neutron
stars, the gravitational wave frequency at the ISCO (which marks the end of the
inspiral phase) ranges from 800 Hz to 1200 Hz, depending upon the EOS. Detailed
comparisons with 3rd order post-Newtonian results for point-mass binaries
reveals a very good agreement until hydrodynamical effects (dominated by
high-order functions of frequency) become important, which occurs at a
frequency ranging from 500 Hz to 1050 Hz, depending upon the EOS.Comment: 11 pages, 10 EPS figures, minor revisions, accepted for publication
in A&
Estimating the binary fraction of planetary nebulae central stars
During the past 20 years, the idea that non-spherical planetary nebulae (PN)
may need a binary or planetary interaction to be shaped was discussed by
various authors. It is now generally agreed that the varied morphologies of PN
cannot be fully explained solely by single star evolution. Observationally,
more binary central stars of planetary nebulae (CSPN) have been discovered,
opening new possibilities to understand the connections between binarity and
morphology. So far, \simeq 45 binary CSPN have been detected, most being close
systems detected via flux variability. To determine the PN binary fraction, one
needs a method to detect wider binaries. We present here recent results
obtained with the various techniques described, concentrating on binary
infrared excess observations aimed at detecting binaries of any separation.Comment: 2 pages, IAU 283: An Eye To The Future proceeding
Nucleon superfluidity versus thermal states of isolated and transiently accreting neutron stars
The properties of superdense matter in neutron star (NS) cores control NS thermal states by affecting the efficiency of neutrino emission from NS interiors. To probe these properties we confront the theory of thermal evolution of NSs with observations of their thermal radiation. Our observational basis includes cooling isolated NSs (INSs) and NSs in quiescent states of soft X-ray transients (SXTs). We find that the data on SXTs support the conclusions obtained from the analysis of INSs: strong proton superfluidity with T_{cp,max} >= 10^9 K should be present, while mild neutron superfluidity with T_{cn,max} =(2*10^8 -- 2*10^9) K is ruled out in the outer NS core. Here T_{cn,max} and T_{cp,max} are the maximum values of the density dependent critical temperatures of neutrons and protons. The data on SXTs suggest also that: (i) cooling of massive NSs is enhanced by neutrino emission more powerful than the emission due to Cooper pairing of neutrons; (ii) mild neutron superfluidity, if available, might be present only in inner cores of massive NSs. In the latter case SXTs would exhibit dichotomy, i.e. very similar SXTs may evolve to very different thermal states
The r-modes in accreting neutron stars with magneto-viscous boundary layers
We explore the dynamics of the r-modes in accreting neutron stars in two
ways. First, we explore how dissipation in the magneto-viscous boundary layer
(MVBL) at the crust-core interface governs the damping of r-mode perturbations
in the fluid interior. Two models are considered: one assuming an
ordinary-fluid interior, the other taking the core to consist of superfluid
neutrons, type II superconducting protons, and normal electrons. We show,
within our approximations, that no solution to the magnetohydrodynamic
equations exists in the superfluid model when both the neutron and proton
vortices are pinned. However, if just one species of vortex is pinned, we can
find solutions. When the neutron vortices are pinned and the proton vortices
are unpinned there is much more dissipation than in the ordinary-fluid model,
unless the pinning is weak. When the proton vortices are pinned and the neutron
vortices are unpinned the dissipation is comparable or slightly less than that
for the ordinary-fluid model, even when the pinning is strong. We also find in
the superfluid model that relatively weak radial magnetic fields ~ 10^9 G (10^8
K / T)^2 greatly affect the MVBL, though the effects of mutual friction tend to
counteract the magnetic effects. Second, we evolve our two models in time,
accounting for accretion, and explore how the magnetic field strength, the
r-mode saturation amplitude, and the accretion rate affect the cyclic evolution
of these stars. If the r-modes control the spin cycles of accreting neutron
stars we find that magnetic fields can affect the clustering of the spin
frequencies of low mass x-ray binaries (LMXBs) and the fraction of these that
are currently emitting gravitational waves.Comment: 19 pages, 8 eps figures, RevTeX; corrected minor typos and added a
referenc
Binary microlensing event OGLE-2009-BLG-020 gives a verifiable mass, distance and orbit predictions
We present the first example of binary microlensing for which the parameter
measurements can be verified (or contradicted) by future Doppler observations.
This test is made possible by a confluence of two relatively unusual
circumstances. First, the binary lens is bright enough (I=15.6) to permit
Doppler measurements. Second, we measure not only the usual 7 binary-lens
parameters, but also the 'microlens parallax' (which yields the binary mass)
and two components of the instantaneous orbital velocity. Thus we measure,
effectively, 6 'Kepler+1' parameters (two instantaneous positions, two
instantaneous velocities, the binary total mass, and the mass ratio). Since
Doppler observations of the brighter binary component determine 5 Kepler
parameters (period, velocity amplitude, eccentricity, phase, and position of
periapsis), while the same spectroscopy yields the mass of the primary, the
combined Doppler + microlensing observations would be overconstrained by 6 + (5
+ 1) - (7 + 1) = 4 degrees of freedom. This makes possible an extremely strong
test of the microlensing solution. We also introduce a uniform microlensing
notation for single and binary lenses, we define conventions, summarize all
known microlensing degeneracies and extend a set of parameters to describe full
Keplerian motion of the binary lenses.Comment: 51 pages, 8 figures, 2 appendices. Submitted to ApJ. Fortran codes
for Appendix B are attached to this astro-ph submission and are also
available at http://www.astronomy.ohio-state.edu/~jskowron/OGLE-2009-BLG-020
MOA-2009-BLG-387Lb: A massive planet orbiting an M dwarf
We report the discovery of a planet with a high planet-to-star mass ratio in
the microlensing event MOA-2009-BLG-387, which exhibited pronounced deviations
over a 12-day interval, one of the longest for any planetary event. The host is
an M dwarf, with a mass in the range 0.07 M_sun < M_host < 0.49M_sun at 90%
confidence. The planet-star mass ratio q = 0.0132 +- 0.003 has been measured
extremely well, so at the best-estimated host mass, the planet mass is m_p =
2.6 Jupiter masses for the median host mass, M = 0.19 M_sun. The host mass is
determined from two "higher order" microlensing parameters. One of these, the
angular Einstein radius \theta_E = 0.31 +- 0.03 mas, is very well measured, but
the other (the microlens parallax \pi_E, which is due to the Earth's orbital
motion) is highly degenate with the orbital motion of the planet. We
statistically resolve the degeneracy between Earth and planet orbital effects
by imposing priors from a Galactic model that specifies the positions and
velocities of lenses and sources and a Kepler model of orbits. The 90%
confidence intervals for the distance, semi-major axis, and period of the
planet are 3.5 kpc < D_L < 7.9 kpc, 1.1 AU < a < 2.7AU, and 3.8 yr < P < 7.6
yr, respectively.Comment: 20 pages including 8 figures. A&A 529 102 (2011
- …