34 research outputs found

    Examining the distribution and impact of single nucleotide polymorphisms in the capsular locus of Streptococcus pneumoniae serotype 19A

    Get PDF
    Streptococcus pneumoniae serotype 19A prevalence has increased after implementation of PCV7 and PCV10 vaccines. In this study, we have provided, with high accuracy, the genetic diversity of the 19A serotype in a cohort of Dutch invasive pneumococcal disease patients and asymptomatic carriers obtained in the period 2004-2016. Whole genomes of the 338 pneumococcal isolates in this cohort were sequenced and their capsule (cps) loci compared to examine the diversity and determine the impact on the production of CPS sugar precursors and CPS shedding. We discovered 79 types with a unique CPS locus sequence. Most variation was observed in the rmlB and rmlD genes of the TDP-Rha synthesis pathway, and in the wzg gene, of unknown function. Interestingly, gene variation in the cps locus was conserved in multiple alleles. Using RmlB and RmlD protein models, we predict that enzymatic function is not affected by the single nucleotide polymorphisms as identified. To determine if RmlB and RmlD function was affected, we analyzed nucleotide sugar levels using UHPLC-MS. CPS precursors differed between 19A cps locus subtypes, including TDP-Rha, but no clear correlation was observed. Also, a significant difference in multiple nucleotide sugar levels was observed between phylogenetically branched groups. Because of indications of a role for Wzg in capsule shedding, we analyzed if this was affected. No clear indication of a direct role in shedding was found. We thus describe genotypic variety in rmlB, rmlD and wzg in serotype 19A the Netherlands, for which we have not discovered an associated phenotype

    Streptococcal dTDP-L-rhamnose biosynthesis enzymes:functional characterization and lead compound identification

    Get PDF
    Biosynthesis of the nucleotide sugar precursor dTDP-L-rhamnose is critical for the viability and virulence of many human pathogenic bacteria, including Streptococcus pyogenes (Group A Streptococcus; GAS), Streptococcus mutans and Mycobacterium tuberculosis. Streptococcal pathogens require dTDP-L-rhamnose for the production of structurally similar rhamnose polysaccharides in their cell wall. Via heterologous expression in S. mutans, we confirmed that GAS RmlB and RmlC are critical for dTDP-L-rhamnose biosynthesis through their action as dTDP-glucose-4,6-dehydratase and dTDP-4-keto-6-deoxyglucose-3,5-epimerase enzymes respectively. Complementation with GAS RmlB and RmlC containing specific point mutations corroborated the conservation of previous identified catalytic residues. Bio-layer interferometry was used to identify and confirm inhibitory lead compounds that bind to GAS dTDP-rhamnose biosynthesis enzymes RmlB, RmlC and GacA. One of the identified compounds, Ri03, inhibited growth of GAS, other rhamnose-dependent streptococcal pathogens as well as M. tuberculosis with an IC 50 of 120–410 µM. Importantly, we confirmed that Ri03 inhibited dTDP-L-rhamnose formation in a concentration-dependent manner through a biochemical assay with recombinant rhamnose biosynthesis enzymes. We therefore conclude that inhibitors of dTDP-L-rhamnose biosynthesis, such as Ri03, affect streptococcal and mycobacterial viability and can serve as lead compounds for the development of a new class of antibiotics that targets dTDP-rhamnose biosynthesis in pathogenic bacteria

    Glucose and glutamine fuel protein O-GlcNAcylation to control T cell self-renewal and malignancy

    Get PDF
    Sustained glucose and glutamine transport are essential for activated T lymphocytes to support ATP and macromolecule biosynthesis. We now show that glutamine and glucose also fuel an indispensible dynamic regulation of intracellular protein O-GlcNAcylation at key stages of T cell development, transformation and differentiation. Glucose and glutamine are precursors of UDP-GlcNAc, a substrate for cellular glycosyltransferases. Immune activated T cells contained higher concentrations of UDP-GlcNAc and increased intracellular protein O-GlcNAcylation controlled by the enzyme O-GlcNAc glycosyltransferase as compared to naïve cells. We identified Notch, the T cell antigen receptor and c-Myc as key controllers of T cell protein O-GlcNAcylation, via regulation of glucose and glutamine transport. Loss of O-GlcNAc transferase blocked T cell progenitor renewal, malignant transformation, and peripheral T cell clonal expansion. Nutrient-dependent signaling pathways regulated by O-GlcNAc glycosyltransferase are thus fundamental for T cell biology

    Probing Synergy between Two Catalytic Strategies in the Glycoside Hydrolase O-GlcNAcase Using Multiple Linear Free Energy Relationships

    Get PDF
    Human O-GlcNAcase plays an important role in regulating the post-translational modification of serine and threonine residues with β-O-linked N-acetylglucosamine monosaccharide unit (O-GlcNAc). The mechanism of O-GlcNAcase involves nucleophilic participation of the 2-acetamido group of the substrate to displace a glycosidically linked leaving group. The tolerance of this enzyme for variation in substrate structure has enabled us to characterize O-GlcNAcase transition states using several series of substrates to generate multiple simultaneous free-energy relationships. Patterns revealing changes in mechanism, transition state, and rate-determining step upon concomitant variation of both nucleophilic strength and leaving group abilities are observed. The observed changes in mechanism reflect the roles played by the enzymic general acid and the catalytic nucleophile. Significantly, these results illustrate how the enzyme synergistically harnesses both modes of catalysis; a feature that eludes many small molecule models of catalysis. These studies also suggest the kinetic significance of an oxocarbenium ion intermediate in the O-GlcNAcase-catalyzed hydrolysis of glucosaminides, probing the limits of what may be learned using nonatomistic investigations of enzymic transition-state structure and offering general insights into how the superfamily of retaining glycoside hydrolases act as efficient catalysts

    Gas permeation through Nafion Part 1: Measurements

    No full text
    This study focuses on the characterization of gas permeation through Nafion, the most commonly used polymer electrolyte membrane (PEMs) for low-temperature fuel cells and water electrolyzers. In the first part of this study, novel modifications of the electrochemical monitoring technique to precisely measure the hydrogen and oxygen permeabilities of Nafion are presented. With these techniques, the gas permeabilities of Nafion were observed to be independent of pressures, which was ascribed to a solely diffusive process. Moreover, the temperature dependence of the hydrogen and oxygen permeabilities through Nafion in the fully hydrated state (where the water content is independent of the temperature) were measured in order to determine the activation energies of the permeation mechanisms. On the basis of the measured influence of temperature and relative humidity on the gas permeabilities of Nafion, the pathways for gas permeation through its aqueous and solid phase are qualitatively discussed. The second part of this study presents a resistor network model to quantitatively correlate the microscopic structure of Nafion and its gas permeabilities
    corecore