277 research outputs found

    Visible-IR Colors and Lightcurve Analysis of Two Bright TNOs: 1999 TC36 and 1998 SN165

    Full text link
    We report on observations of two bright Trans-Neptunian Objects (TNOs) - 1999 TC36 and 1998 SN165}- during two observational campaigns, as part of the Meudon Multicolor Survey of Outer Solar System Objects. V-J color was measured for 1999 TC36 (V-J=2.34+/-0.18), which combined with previous measured colors in the visible, indicate a red reflectivity spectrum at all wavelengths. Photometric V-band lightcurves were taken for both objects over a time span of around 8 hours. We have determined a possible rotational period of P=10.1+/-0.8 h for 1998 SN165, making it the seventh TNO with an estimated period. From its lightcurve variation of Dm=0.151(+0.022/-0.030), we have inferred an asymmetry ratio of a/b >=1.148(+0.024/-0.031). For 1999 TC36, we did not detect any rotational period or periodic signal variation within the uncertainties, but the analysis of its lightcurve hints to a slight systematic magnitude decrease.Comment: Accepted for publication in New Astronomy (13 pages, inc. 4 figures

    Colors and taxonomy of Centaurs and Trans-Neptunian Objects

    Full text link
    The study of the surface properties of Centaurs and Trans-Neptunian Objects (TNOs) provides essential information about the early conditions and evolution of the outer Solar System. Due to the faintness of most of these distant and icy bodies, photometry currently constitutes the best technique to survey a statistically significant number of them. Our aim is to investigate color properties of a large sample of minor bodies of the outer Solar System, and set their taxonomic classification. We carried out visible and near-infrared photometry of Centaurs and TNOs, making use, respectively, of the FORS2 and ISAAC instruments at the Very Large Telescope (European Southern Observatory). Using G-mode analysis, we derived taxonomic classifications according to the Barucci et al. (2005a) system. We report photometric observations of 31 objects, 10 of them have their colors reported for the first time ever. 28 Centaurs and TNOs have been assigned to a taxon. We combined the entire sample of 38 objects taxonomically classified in the framework of our programme (28 objects from this work; 10 objects from DeMeo et al. 2009a) with previously classified TNOs and Centaurs, looking for correlations between taxonomy and dynamics. We compared our photometric results to literature data, finding hints of heterogeneity for the surfaces of 4 objects.Comment: 7 pages, 4 figures. To be published in Astronomy and Astrophysic

    Rotational properties of the Haumea family members and candidates: Short-term variability

    Get PDF
    Haumea is one of the most interesting and intriguing transneptunian objects (TNOs). It is a large, bright, fast rotator, and its spectrum indicates nearly pure water ice on the surface. It has at least two satellites and a dynamically related family of more than ten TNOs with very similar proper orbital parameters and similar surface properties. The Haumean family is the only one currently known in the transneptunian belt. Various models have been proposed but the formation of the family remains poorly understood. In this work, we have investigated the rotational properties of the family members and unconfirmed family candidates with short-term variability studies, and report the most complete review to date. We present results based on five years of observations and report the short-term variability of five family members, and seven candidates. The mean rotational periods, from Maxwellian fits to the frequency distributions, are 6.27+/-1.19 h for the confirmed family members, 6.44+/-1.16 h for the candidates, and 7.65+/-0.54 h for other TNOs (without relation to the family). According to our study, there is a suggestion that Haumea family members rotate faster than other TNOs, however, the sample of family member is still too limited for a secure conclusion. We also highlight the fast rotation of 2002 GH32. This object has a 0.36+/-0.02 mag amplitude lightcurve and a rotational period of about 3.98 h. Assuming 2002 GH32 is a triaxial object in hydrostatic equilibrium, we derive a lower limit to the density of 2.56 g cm^-3. This density is similar to Haumea's and much more dense than other small TNO densities.Comment: Accepted for publication, A

    Reopening the TNOs Color Controversy: Centaurs Bimodality and TNOs Unimodality

    Full text link
    We revisit the Trans-Neptunian Objects (TNOs) color controversy allegedly solved by Tegler and Romanishin 2003. We debate the statistical approach of the quoted work and discuss why it can not draw the claimed conclusions, and reanalyze their data sample with a more adequate statistical test. We find evidence for the existence of two color groups among the Centaurs. Therefore, mixing both centaurs and TNOs populations lead to the erroneous conclusion of a global bimodality, while there is no evidence for two color groups in the TNOs population alone. We use quasi-simultaneous visible color measurements published for 20 centaurs (corresponding to about half of the identified objects of this class), and conclude on the existence of two groups. With the surface evolution model of Delsanti et al. (2003) we discuss how the existence of two groups of Centaurs may be compatible with a continuous TNOs color distribution.Comment: 4 pages, 4 figures, accepted for publication in Astronomy and Astrophysics Letter

    Statistical inversion method for binary asteroids orbit determination

    Get PDF
    International audienceWe focus on the study of binary asteroids, which are common in the Solar system from its inner to its outer regions . These objects provide fundamental physical parameters such as mass and density, andhence clues on the early solar sytem, or ooher processes that are affecting asteroid over time. The present method of orbit computation for resolved binaries is based on Markov Chain Monte-Carlo statistical inversion technique. Particularly we use the metropolis-hasting algorithm with Thiele - Innes equation for sampling the orbital elements and system mass through the sampling observations. The method requires a minimum of four observations, made at the same tangent plane; it is of particular interest for orbit determination over short ars or with sparse data. The observations are sampled within their observationale errors with an assumed distribution. The sampling yields the whole region of possible orbits including the one that is most probable.

    The Color Distribution in the Edgeworth-Kuiper Belt

    Get PDF
    We have started since 1997 the Meudon Multicolor Survey of Outer Solar System Objects with the aim of collecting a large and homogeneous set of color data for Trans-Neptunian and Centaurs objects [...] We have a combined sample of 52 B-R color measurements for 8 Centaurs, 22 Classicals, 13 Plutinos, 8 Scattered objects and 1 object with unidentified dynamical class. This dataset is the largest single and homogeneous published dataset to date [...]. A strong (color) correlation with mean excitation velocity points toward a space weathering/impact origin for the color diversity. However, thorough modeling of the collisional/dynamical environment in the Edgeworth-Kuiper belt needs to be done in order to confirm this scenario. We found also that the Classical TNOs consist in the superposition of two distinct populations: the dynamically Cold Classical TNOs (red colors, low i, small sizes) and the dynamically Hot Classical TNOs (diverse colors, moderate and high i, larger sizes). [...] Our specific observation strategy [...] permitted us to highlight a few objects suspected to have true compositional and/or texture variation on their surfaces. These are 1998 HK151, 1999 DF9, 1999 OY3, 2000 GP183, 2000 OK67, and 2001 KA77 and should be prime targets for further observations [...]. Our survey has also highlighted 1998 SN165 whose colors and dynamical properties puts it in a new dynamical class distinct from the Classicals, its previously assigned dynamical class.Comment: Accepted for publication in Astronomical Journal (38 pages, inc. 11 figures

    Detection Technique for Artificially-Illuminated Objects in the Outer Solar System and Beyond

    Full text link
    Existing and planned optical telescopes and surveys can detect artificially-illuminated objects comparable in total brightness to a major terrestrial city out to the outskirts of the Solar System. Orbital parameters of Kuiper belt objects (KBOs) are routinely measured to exquisite precisions of <10^{-3}. Here we propose to measure the variation of the observed flux F from such objects as a function of their changing orbital distances D. Sunlight-illuminated objects will show a logarithmic slope alpha=(dlogF/dlog D)=-4 whereas artificially-illuminated objects should exhibit alpha=-2. Planned surveys using the proposed LSST will provide superb data that would allow measurement of alpha for thousands of KBOs. If objects with alpha=-2 are found, follow-up observations can measure their spectra to determine if they are illuminated by artificial lighting. The search can be extended beyond the Solar System with future generations of telescopes on the ground and in space, which would be capable of detecting phase modulation due to very strong artificial illumination on the night-side of planets as they orbit their parent stars.Comment: 9 pages, accepted for publication in Astrobiolog

    Coordinated thermal and optical observations of Trans-Neptunian object (20000) Varuna from Sierra Nevada

    Get PDF
    We report on coordinated thermal and optical measurements of trans-Neptunian object (20000) Varuna obtained in January-February 2002, respectively from the IRAM 30-m and IAA 1.5 m telescopes. The optical data show a lightcurve with a period of 3.176+/-0.010 hr, a mean V magnitude of 20.37+/-0.08 and a 0.42+/-0.01 magnitude amplitude. They also tentatively indicate that the lightcurve is asymmetric and double-peaked. The thermal observations indicate a 1.12+/-0.41 mJy flux, averaged over the object's rotation. Combining the two datasets, we infer that Varuna has a mean 1060(+180/-220) km diameter and a mean 0.038(+0.022/-0.010) V geometric albedo, in general agreement with an earlier determination using the same technique.Comment: Accepted for publication in Astronomy & Astrophysics (7 pages, including 3 figures

    Neptune Trojans and Plutinos: colors, sizes, dynamics, and their possible collisions

    Get PDF
    Neptune Trojans and Plutinos are two subpopulations of trans-Neptunian objects located in the 1:1 and the 3:2 mean motion resonances with Neptune, respectively, and therefore protected from close encounters with the planet. However, the orbits of these two kinds of objects may cross very often, allowing a higher collisional rate between them than with other kinds of trans-Neptunian objects, and a consequent size distribution modification of the two subpopulations. Observational colors and absolute magnitudes of Neptune Trojans and Plutinos show that i) there are no intrinsically bright (large) Plutinos at small inclinations, ii) there is an apparent excess of blue and intrinsically faint (small) Plutinos, and iii) Neptune Trojans possess the same blue colors as Plutinos within the same (estimated) size range do. For the present subpopulations we analyzed the most favorable conditions for close encounters/collisions and address any link there could be between those encounters and the sizes and/or colors of Plutinos and Neptune Trojans. We also performed a simultaneous numerical simulation of the outer Solar System over 1 Gyr for all these bodies in order to estimate their collisional rate. We conclude that orbital overlap between Neptune Trojans and Plutinos is favored for Plutinos with large libration amplitudes, high eccentricities, and small inclinations. Additionally, with the assumption that the collisions can be disruptive creating smaller objects not necessarily with similar colors, the present high concentration of small Plutinos with small inclinations can thus be a consequence of a collisional interaction with Neptune Trojans and such hypothesis should be further analyzed.Comment: 15 pages, 9 figures, 6 tables, accepted for publication in A&

    ESO Large Programme on Trans-Neptunian Objects and Centaurs: Spectroscopic Investigation of Centaur 2001 BL41 and TNOs (26181) 1996 GQ21 and (26375) 1999 DE9*

    Get PDF
    Observational results that are part of an ESO Large Programme dedicated to the characterization of the physical properties of trans-Neptunian objects and Centaurs are presented. We report observations related to the Centaur 2001 BL41 and two trans-Neptunian objects, (26181) 1996 GQ21 and (26375) 1999 DE9. We present results from broadband photometry (JHK filters) and low-dispersion infrared spectroscopy performed with ISAAC at the Very Large Telescope, in Chile. None of the spectra show evidence of absorption features—in particular, water ice features. We use a radiative transfer model to investigate the surface composition of these icy and primitive outer solar system bodies. We suggest models composed of geographical mixtures of organic compounds and minerals
    corecore