68 research outputs found

    Single-Field Inflation and the Local Ansatz: Distinguishability and Consistency

    Get PDF
    The single-field consistency conditions and the local ansatz have played separate but important roles in characterizing the non-Gaussian signatures of single- and multifield inflation respectively. We explore the precise relationship between these two approaches and their predictions. We demonstrate that the predictions of the single-field consistency conditions can never be satisfied by a general local ansatz with deviations necessarily arising at order (ns1)2(n_s-1)^2. This implies that there is, in principle, a minimum difference between single- and (fully local) multifield inflation in observables sensitive to the squeezed limit such as scale-dependent halo bias. We also explore some potential observational implications of the consistency conditions and its relationship to the local ansatz. In particular, we propose a new scheme to test the consistency relations. In analogy with delensing of the cosmic microwave background, one can deproject the coupling of the long wavelength modes with the short wavelength modes and test for residual anomalous coupling.Comment: 17 page

    Human-microbes symbiosis in health and disease, on earth and beyond planetary boundaries

    Get PDF
    Humans are microbial, ecosystems and symbioses. The relationship that humans have with their microbiomes is an essential element to maintaining health and wellbeing. Recent changes in lifestyles may have fostered an alteration of this symbiosis, which is frequently associated with chronic disorders. Here, we will review the state of the art on the central role of human-microbes symbiosis in health and disease, highlighting the innovations expected from the emerging knowledge on host-microbes symbiosis, for diagnosis, preventive nutrition, and a medicine of the ‘microbial human’. Since microbiome science also impacts several sustainable development goals of the Planetary Boundaries Initiative, we will also explore how microbiome science could help to provide sustainability tools and strategies aligned with the life support systems sought by the Micro-Ecological Life Support Systems Alternative (MELiSSA) Project lead by the European Space Agency (ESA)

    Dark Matter Interactions, Helium, and the Cosmic Microwave Background

    Get PDF
    The cosmic microwave background (CMB) places a variety of model-independent constraints on the strength interactions of the dominant component of dark matter with the standard model. Percent-level subcomponents of the dark matter can evade the most stringent CMB bounds by mimicking the behavior of baryons, allowing for larger couplings and novel experimental signatures. However, in this Letter, we will show that such tightly coupled subcomponents leave a measurable imprint on the CMB that is well approximated by a change to the helium fraction, Y_(He). Using the existing CMB constraint on Y_(He), we derive a new upper limit on the fraction of tightly coupled dark matter, f_(TCDM), of f_(TCDM) < 0.006 (95% C.I.). We show that future CMB experiments can reach f_(TCDM) < 0.001 (95% C.I.) and confirm that the bounds derived in this way agree with the results of a complete analysis. These bounds provide an example of how CMB constraints on Y_(He) have applications beyond studying big bang nucleosynthesis, since tightly coupled dark matter plays no direct role in the formation of light nuclei. We briefly comment on the implications for model building, including millicharged dark matter

    Testing Inflation with Large Scale Structure: Connecting Hopes with Reality

    Full text link
    The statistics of primordial curvature fluctuations are our window into the period of inflation, where these fluctuations were generated. To date, the cosmic microwave background has been the dominant source of information about these perturbations. Large scale structure is however from where drastic improvements should originate. In this paper, we explain the theoretical motivations for pursuing such measurements and the challenges that lie ahead. In particular, we discuss and identify theoretical targets regarding the measurement of primordial non-Gaussianity. We argue that when quantified in terms of the local (equilateral) template amplitude fNLlocf_{\rm NL}^{\rm loc} (fNLeqf_{\rm NL}^{\rm eq}), natural target levels of sensitivity are ΔfNLloc,eq.1\Delta f_{\rm NL}^{\rm loc, eq.} \simeq 1. We highlight that such levels are within reach of future surveys by measuring 2-, 3- and 4-point statistics of the galaxy spatial distribution. This paper summarizes a workshop held at CITA (University of Toronto) on October 23-24, 2014.Comment: 27 pages + reference

    Enteric Delivery of Regenerating Family Member 3 alpha Alters the Intestinal Microbiota and Controls Inflammation in Mice With Colitis

    Get PDF
    Background & Aims Paneth cell dysfunction causes deficiencies in intestinal C-type lectins and antimicrobial peptides, which leads to dysbiosis of the intestinal microbiota, alters the mucosal barrier, and promotes development of inflammatory bowel diseases. We investigated whether transgenic (TG) expression of the human regenerating family member 3 alpha gene ( REG3A ) alters the fecal microbiota and affects development of colitis in mice. Methods We performed studies with C57BL/6 mice that express human regenerating family member 3 alpha (hREG3A) in hepatocytes, via the albumin gene promoter. In these mice, hREG3A travels via the bile to the intestinal lumen. Some mice were given dextran sodium sulfate (DSS) to induce colitis. Feces were collected from mice and the composition of the microbiota was analyzed by 16S ribosomal RNA sequencing. The fecal microbiome was also analyzed from mice that express only 1 copy of human REG3A transgene but were fed feces from control mice (not expressing hREG3A) as newborns. Mice expressing hREG3A were monitored for DSS-induced colitis after cohousing or feeding feces from control mice. Colitis was induced in another set of control and hREG3A-TG mice by administration of trinitrobenzene sulfonic acid; some mice were given intrarectal injections of the hREG3A protein. Colon tissues were collected from mice and analyzed by histology and immunohistochemistry to detect mucin 2, as well as by 16S ribosomal RNA fluorescence in situ hybridization, transcriptional analyses, and quantitative polymerase chain reaction. We measured levels of reactive oxygen species (ROS) in bacterial cultures and fecal microbiota using 2′,7′-dichlorofluorescein diacetate and flow cytometry. Results The fecal microbiota of mice that express hREG3A had a significant shift in composition, compared with control mice, with enrichment of Clostridiales (Ruminococcaceae, Lachnospiraceae) and depletion of Bacteroidetes (Prevotellaceae); the TG mice developed less-severe colitis following administration of DSS than control mice, associated with preserved gut barrier integrity and reduced bacterial translocation, epithelial inflammation, and oxidative damage. A similar shift in the composition of the fecal microbiota occurred after a few months in TG mice heterozygous for REG3A that harbored a wild-type maternal microbiota at birth; these mice developed less-severe forms of colitis following DSS administration. Cohoused and germ-free mice fed feces from REG3A- TG mice and given DSS developed less-severe forms of colitis and had reduced lipopolysaccharide activation of the toll-like receptor 4 and increased survival times compared with mice not fed feces from REG3A -TG mice. REG3A TG mice developed only mild colonic inflammation after exposure to 2,4,6-trinitrobenzene sulfonic acid, compared with control mice. Control mice given intrarectal hREG3A and exposed to 2,4,6-trinitrobenzene sulfonic acid showed less colon damage and inflammation than mice not given intrarectal hREG3A. Fecal samples from REG3A- TG mice had lower levels of ROS than feces from control mice during DSS administration. Addition of hREG3A to bacterial cultures reduced levels of ROS and increased survival of oxygen-sensitive commensal bacteria ( Faecalibacterium prausnitzii and Roseburia intestinalis ). Conclusions Mice with hepatocytes that express hREG3A, which travels to the intestinal lumen, are less sensitive to colitis than control mice. We found hREG3A to alter the colonic microbiota by decreasing levels of ROS. Fecal microbiota from REG3A -TG mice protect non-TG mice from induction of colitis. These findings indicate a role for reduction of oxidative stress in preserving the gut microbiota and its ability to prevent inflammation

    Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology

    Get PDF
    Objective: Individuals with obesity and type 2 diabetes differ from lean and healthy individuals in their abundance of certain gut microbial species and microbial gene richness. Abundance of Akkermansia muciniphila, a mucin-degrading bacterium, has been inversely associated with bodyfat mass and glucose intolerance in mice, but more evidence is needed in humans. The impact of diet and weight loss on this bacterial species is unknown. Our objective was to evaluate the association between fecal A. muciniphila abundance, fecal microbiome gene richness, diet, host characteristics, and their changes after calorie restriction (CR). Design: The intervention consisted of a 6-week CR period followed by a 6-week weight stabilization (WS) diet in overweight and obese adults (N=49, including 41 women). Fecal A. muciniphila abundance, fecal microbial gene richness, diet and bioclinical parameters were measured at baseline and after CR and WS. Results: At baseline A. muciniphila was inversely related to fasting glucose, waist-to-hip ratio, and subcutaneous adipocyte diameter. Subjects with higher gene richness and A. muciniphila abundance exhibited the healthiest metabolic status, particularly in fasting plasma glucose, plasma triglycerides and body fat distribution. Individuals with higher baseline A. muciniphila displayed greater improvement in insulin sensitivity markers and other clinical parameters after CR. A. muciniphila was associated with microbial species known to be related to health. Conclusion: A. muciniphila is associated with a healthier metabolic status and better clinicaloutcomes after CR in overweight/obese adults, however the interaction between gut microbiota ecology and A. muciniphila has to be taken into account
    corecore