699 research outputs found

    \u3cem\u3eBoring\u3c/em\u3e Lessons: Defining the Limits of a Teacher\u27s First Amendment Right to Speak Through the Curriculum

    Get PDF
    Margaret Boring\u27s classes were anything but boring. She taught Advanced Acting at Owen High School in rural Buncombe County, North Carolina, and her classes\u27 performances regularly won regional and state awards. In the fall of 1991, Ms. Boring chose a controversial play, Independence by Lee Blessing, for her students to perform. Independence powerfully depicts the dynamics within a dysfunctional, single-parent family - a divorced mother and three daughters; one a lesbian, another pregnant with an illegitimate child. Prior to the first performance at the school, Ms. Boring informed the principal of the play\u27s title but not its content. After the presentation of the play, she was transferred to a middle school. Viewing her transfer as a demotion, she filed suit, claiming that the First Amendment protected her decision to teach controversial material. A federal trial court dismissed her complaint for failure to state a claim. On appeal, a three-judge panel of the Fourth Circuit reversed the trial court, finding that Ms. Boring\u27s choice of the play was speech protected by the First Amendment. Later, a sharply divided Fourth Circuit, sitting en banc, split 7-6 to reverse the panel decision, finding that curricular speech garners no First Amendment protection

    Exploration for Functional Nucleotide Sequence Candidates within Coding Regions of Mammalian Genes

    Get PDF
    The primary role of a protein coding gene is to encode amino acids. Therefore, synonymous sites of codons, which do not change the encoded amino acid, are regarded as evolving neutrally. However, if a certain region of a protein coding gene contains a functional nucleotide element (e.g. splicing signals), synonymous sites in the region may have selective pressure. The existence of such elements would be detected by searching regions of low nucleotide substitution. We explored invariant nucleotide sequences in 10 790 orthologous genes of six mammalian species (Homo sapiens, Macaca mulatta, Mus musculus, Rattus norvegicus, Bos taurus, and Canis familiaris), and extracted 4150 sequences whose conservation is significantly stronger than other regions of the gene and named them significantly conserved coding sequences (SCCSs). SCCSs are observed in 2273 genes. The genes are mainly involved with development, transcriptional regulation, and the neurons, and are expressed in the nervous system and the head and neck organs. No strong influence of conventional factors that affect synonymous substitution was observed in SCCSs. These results imply that SCCSs may have double function as nucleotide element and protein coding sequence and retained in the course of mammalian evolution

    Ampullary cancers harbor ELF3 tumor suppressor gene mutations and exhibit frequent WNT dysregulation

    Get PDF
    The ampulla of Vater is a complex cellular environment from which adenocarcinomas arise to form a group of histopathologically heterogenous tumors. To evaluate the molecular features of these tumors, 98 ampullary adenocarcinomas were evaluated and compared to 44 distal bile duct and 18 duodenal adenocarcinomas. Genomic analyses revealed mutations in the WNT signaling pathway among half of the patients and in all three adenocarcinomas irrespective of their origin and histological morphology. These tumors were characterized by a high frequency of inactivating mutations of ELF3, a high rate of microsatellite instability, and common focal deletions and amplifications, suggesting common attributes in the molecular pathogenesis are at play in these tumors. The high frequency of WNT pathway activating mutation, coupled with small-molecule inhibitors of β-catenin in clinical trials, suggests future treatment decisions for these patients may be guided by genomic analysis

    p53 connects tumorigenesis and reprogramming to pluripotency

    Get PDF
    The tumor suppressor gene p53 prevents the initiation of tumor formation by inducing cell cycle arrest, senescence, DNA repair, and apoptosis. Recently, the absence or mutation of p53 was described to facilitate nuclear reprogramming. These findings suggest an influence of p53 on the de-differentiation process, and highlight the similarities between induction of pluripotency and tumor formation

    Δ40 Isoform of p53 Controls β-Cell Proliferation and Glucose Homeostasis in Mice

    Get PDF
    Objective: Investigating the dynamics of pancreatic β\beta-cell mass is critical for developing strategies to treat both type 1 and type 2 diabetes. p53, a key regulator of the cell cycle and apoptosis, has mostly been a focus of investigation as a tumor suppressor. Although p53 alternative transcripts can modulate p53 activity, their functions are not fully understood. We hypothesized that β\beta-cell proliferation and glucose homeostasis were controlled by Δ\Delta40p53, a p53 isoform lacking the transactivation domain of the full-length protein that modulates total p53 activity and regulates organ size and life span in mice. Research Design and Methods: We phenotyped metabolic parameters in Δ\Delta40p53 transgenic (p44tg) mice and used quantitative RT-PCR, Western blotting, and immunohistochemistry to examine β\beta-cell proliferation. Results: Transgenic mice with an ectopic p53 gene encoding Δ\Delta40p53 developed hypoinsulinemia and glucose intolerance by 3 months of age, which worsened in older mice and led to overt diabetes and premature death from \sim14 months of age. Consistent with a dramatic decrease in β\beta-cell mass and reduced β\beta-cell proliferation, lower expression of cyclin D2 and pancreatic duodenal homeobox-1, two key regulators of proliferation, was observed, whereas expression of the cell cycle inhibitor p21, a p53 target gene, was increased. Conclusions: These data indicate a significant and novel role for Δ\Delta40p53 in β\beta-cell proliferation with implications for the development of age-dependent diabetes

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Knockout and transgenic mice of Trp53: what have we learned about p53 in breast cancer?

    Get PDF
    The human p53 tumor suppressor gene TP53 is mutated at a high frequency in sporadic breast cancer, and Li-Fraumeni syndrome patients who carry germline mutations in one TP53 allele have a high incidence of breast cancer. In the 10 years since the first knockout of the mouse p53 tumor suppressor gene (designated Trp53) was published, much has been learned about the contribution of p53 to biology and tumor suppression in the breast through the use of p53 transgenic and knockout mice. The original mice deficient in p53 showed no mammary gland phenotype. However, studies using BALB/c-Trp53-deficient mice have demonstrated a delayed involution phenotype and a mammary tumor phenotype. Together with other studies of mutant p53 transgenes and p53 bitransgenics, a greater understanding has been gained of the role of p53 in involution, of the regulation of p53 activity by hormones, of the effect of mouse strain and modifier genes on tumor phenotype, and of the cooperation between p53 and other oncogenic pathways, chemical carcinogens and hormonal stimulation in mammary tumorigenesis. Both p53 transgenic and knockout mice are important in vivo tools for understanding breast cancer, and are yet to be exploited for developing therapeutic strategies in breast cancer
    corecore