1,555 research outputs found

    The X-ray reflector in NGC 4945: a time and space resolved portrait

    Get PDF
    We present a time, spectral and imaging analysis of the X-ray reflector in NGC 4945, which reveals its geometrical and physical structure with unprecedented detail. NGC 4945 hosts one of the brightest AGN in the sky above 10 keV, but it is only visible through its reflected/scattered emission below 10 keV, due to absorption by a column density of ~4\times10^24 cm-2. A new Suzaku campaign of 5 observations spanning ~6 months, together with past XMM-Newton and Chandra observations, show a remarkable constancy (within <10%) of the reflected component. Instead, Swift-BAT reveals strong intrinsic variability on time scales longer than one year. Modeling the circumnuclear gas as a thin cylinder with the axis on the plane of the sky, we show that the reflector is at a distance >30-50 pc, well within the imaging capabilities of Chandra at the distance of NGC 4945 (1"~18 pc). Accordingly, the Chandra imaging reveals a resolved, flattened, ~150 pc-long clumpy structure, whose spectrum is fully due to cold reflection of the primary AGN emission. The clumpiness may explain the small covering factor derived from the spectral and variability properties.Comment: 6 pages, 4 figures, 1 table. Accepted for publication in MNRA

    ON THE GEOMETRY OF THE X-RAY EMITTING REGION IN SEYFERT GALAXIES

    Get PDF
    For the first time, detailed radiative transfer calculations of Comptonized X-ray and gamma-ray radiation in a hot pair plasma above a cold accretion disk are performed using two independent codes and methods. The simulations include both energy and pair balance as well as reprocessing of the X- and gamma-rays by the cold disk. We study both plane-parallel coronae as well as active dissipation regions having shapes of hemispheres and pill boxes located on the disk surface. It is shown, contrary to earlier claims, that plane-parallel coronae in pair balance have difficulties in selfconsistently reproducing the ranges of 2-20 keV spectral slopes, high energy cutoffs, and compactnesses inferred from observations of type 1 Seyfert galaxies. Instead, the observations are consistent with the X-rays coming from a number of individual active regions located on the surface of the disk. A number of effects such as anisotropic Compton scattering, the reflection hump, feedback to the soft photon source by reprocessing, and an active region in pair equilibrium all conspire to produce the observed ranges of X-ray slopes, high energy cutoffs, and compactnesses. The spread in spectral X-ray slopes can be due to a spread in the properties of the active regions such as their compactnesses and their elevations above the disk surface. Simplified models invoking isotropic Comptonization in spherical clouds are no longer sufficient when interpreting the data.Comment: 9 pages, 3 postscript figures, figures can be obtained from the authors via e-mail: [email protected]

    Hard X-ray colours of Neutron Star and Black Hole Low Mass X-ray Binaries with INTEGRAL

    Full text link
    The X-ray spectra of Low Mass X-ray Binaries (LMXB) can change on short time-scales, making it difficult to follow their spectral characteristics in detail through model fitting. Colour-colour (C-C) diagrams are therefore often used as alternative, model independent, tools to study the spectral variability of these sources. The INTEGRAL mission, with its high sensitivity, large field of view and good angular resolution, is well suited to study the hard X-ray properties of LMXBs. In particular the ISGRI imager on board of INTEGRAL allows the regular monitoring of the sources in the less frequently studied domain above 20 keV. In this proceeding, C-C diagrams have been made with data from the INTEGRAL public archive; a search is made for systematic differences in the C-C diagrams between black hole candidates (BH) and neutron stars (NS) in LMXBs using a moments analysis method.Comment: Paper from poster presentation at COSPAR meeting, Beijing, 2006. in press: Advances in Space Research, Editor: Wynn H

    Hard X-ray spectral variability of the brightest Seyfert AGN in the Swift/BAT sample

    Full text link
    Aims: We used data from the 58 month long, continuous Swift/Burst Alert Telescope (BAT) observations of the five brightest Seyfert galaxies at hard X-rays, to study their flux and spectral variability in the 20-100 keV energy band. The column density in these objects is less than 10^24 cm-2, which implies that the Swift/BAT data allow us to study the "true" variability of the central source. Results: All objects show significant variations, with an amplitude which is similar to the AGN variability amplitude at energies below 10 keV. We found evidence for an anti-correlation between variability amplitude and black hole mass. The light curves in both bands are well correlated, with no significant delays on time scales as short as 2 days. NGC 4151 and NGC 2110 do not show spectral variability, but we found a significant anti-correlation between hardness ratios and source flux in NGC 4388 (and NGC 4945, IC 4329, to a lesser extent). This "softer when brighter" behaviour is similar to what has been observed at energies below 10 keV, and cannot be explained if the continuum varies only in flux; the intrinsic shape should also steepen with increasing flux. Conclusions: The presence of significant flux variations indicate that the central source in these objects is intrinsically variable on time scales as short as 1-2 days. The intrinsic slope of the continuum varies with the flux (at least in NGC 4388). The positive "spectral slope-flux" correlation can be explained if the temperature of the hot corona decreases with increasing flux. The lack of spectral variations in two objects, could be due to the fact that they may operate in a different "state", as their accretion rate is less than 1% of the Eddington limit (significantly smaller than the rate of the other three objects in the sample).Comment: Accepted (29/10/11) for publication in A&A (12 pages, containing 14 figures and 2 tables). (Abstract shortened --see link for the complete one

    Simultaneous EUV and X-ray variability of NGC 4051

    Get PDF
    We present a flux variability study of simultaneous RXTE and EUVE observations of the highly variable Seyfert galaxy NGC4051. We find a strong correlation between variability in the EUV and medium energy X-ray bands,indicating that both are sampling the same power-law continuum. The lag between the two bands is less than 20 ks and, depending on model assumptions, may be <1 ks. We examine the consequences of such a small lag in the context of simple Comptonisation models for the production of the power-law continuum. A lag of <1 ks implies that the size of the Comptonising region is less than 20 Schwarzschild radii for a black hole of mass >1E6 solar masses.Comment: 8 pages, accepted for publication in MNRA

    Suzaku Observation of Two Ultraluminous X-Ray Sources in NGC 1313

    Full text link
    Two ultraluminous X-ray sources (ULXs) in the nearby Sb galaxy NGC 1313, named X-1 and X-2, were observed with Suzaku on 2005 September 15. During the observation for a net exposure of 28~ks (but over a gross time span of 90~ks), both objects varied in intensity by about 50~%. The 0.4--10 keV X-ray luminosity of X-1 and X-2 was measured as 2.5×1040 erg s12.5 \times 10^{40}~{\rm erg~s^{-1}} and 5.8×1039 erg s15.8 \times 10^{39}~{\rm erg~s^{-1}}, respectively, with the former the highest ever reported for this ULX. The spectrum of X-1 can be explained by a sum of a strong and variable power-law component with a high energy cutoff, and a stable multicolor blackbody with an innermost disk temperature of 0.2\sim 0.2 keV. These results suggest that X-1 was in a ``very high'' state, where the disk emission is strongly Comptonized. The absorber within NGC 1313 toward X-1 is suggested to have a subsolar oxygen abundance. The spectrum of X-2 is best represented, in its fainter phase, by a multicolor blackbody model with the innermost disk temperature of 1.2--1.3 keV, and becomes flatter as the source becomes brighter. Hence X-2 is interpreted to be in a slim-disk state. These results suggest that the two ULXs have black hole masses of a few tens to a few hundreds solar masses.Comment: accepted for publication in PAS

    Extending the Shakura-Sunyaev approach to a strongly magnetized accretion disc model

    Full text link
    We develop a model of thin turbulent accretion discs supported by magnetic pressure of turbulent magnetic fields. This applies when the turbulent kinetic and magnetic energy densities are greater than the thermal energy density in the disc. Whether such discs survive in nature or not remains to be determined, but here we simply demonstrate that self-consistent solutions exist when the alpha-prescription for the viscous stress, similar to that of the original Shakura-Sunyaev model, is used. We show that \alpha \sim 1 for the strongly magnetized case and we calculate the radial structure and emission spectra from the disc in the regime when it is optically thick. Strongly magnetized optically thick discs can apply to the full range of disc radii for objects < 10^{-2} of the Eddington luminosity or for the outer parts of discs in higher luminosity sources. In the limit that the magnetic pressure is equal to the thermal or radiation pressure, our strongly magnetized disc model transforms into the Shakura-Sunyaev model with \alpha=1. Our model produces spectra quite similar to those of standard Shakura-Sunyaev models. In our comparative study, we also discovered a small discrepancy in the spectral calculations of Shakura and Sunyaev (1973).Comment: 27 pages, 11 figures, Astron. Astroph. in press; shortened version accepted by A&A, all calculations and conclusions are unchange

    Government Policy Around Inclusive Education in the UK and the Implications for Children, Families and Teachers

    Get PDF
    The relevance and value of a post-structuralist theoretical orientation when considering inclusion-related policy will be briefly explained, followed by the identification of recurrent themes in a post-structuralist analysis of UK policy developments. These themes include: a confused policy landscape that EY teachers must navigate, rights as a necessary but not sufficient condition of inclusion, and inclusion as an ethical (not economic) project that rejects deficit models of disability. Foucault (1982, p.778) insists on checking “the type of reality with which we are dealing” and, relatedly, the historical conditions of prevailing discursive fabrications to provide “historical awareness of our present circumstance”. Despite a longstanding inclusion agenda in the UK, academic performance continues to be prioritised with implications for teachers, families and children. An implicit binary of worthiness / unworthiness favours children perceived to potentially contribute to national economic capital. Consequently, the nature of caring has changed and teachers are under pressure to identify special needs and disabilities (SEND) as early as possible in a context of inadequate resourcing, external support and training, and competitive pressures. Children will leave EYE to enter an educational system which is test result driven and in which mental health is increasingly an issue. Parents may find they are liaising with schools where their child’s needs are not understood or cannot be adequately supported, or they may find schools refusing admission or experience pressure to move their child to a different setting. It is argued that a post-structuralist analysis permits recognition that a rhetoric of inclusion or inclusive education can serve to obscure tensions between economic, socio-political and ethical agendas

    The first outburst of the black hole candidate MAXI J1836-194 observed by INTEGRAL, Swift, and RXTE

    Full text link
    MAXI J1836-194 is a transient black-hole candidate discovered in outburst by MAXI on 30 August 2011. We report on the available INTEGRAL, Swift, and RXTE observations performed in the direction of the source during this event before 55 864 MJD. Combining the broad band (0.6-200 keV) spectral and timing information obtained from these data with the results of radio observations, we show that the event displayed by MAXI J1836-194 is another example of "failed" outburst. During the first ~20 days after the onset of the event, the source underwent a transition from the canonical low/hard to the hard intermediate state, while reaching the highest X-ray flux. In the ~40 days following the peak of the outburst, the source displayed a progressive spectral hardening and a decrease of the X-ray flux, thus it entered again the low/hard state and began its return to quiescence.Comment: Accepted for A&A Letters on 22 Dec. 201
    corecore