1,874 research outputs found

    Discovery of new TeV supernova remnant shells in the Galactic plane with H.E.S.S

    Full text link
    Supernova remnants (SNRs) are prime candidates for efficient particle acceleration up to the knee in the cosmic ray particle spectrum. In this work we present a new method for a systematic search for new TeV-emitting SNR shells in 2864 hours of H.E.S.S. phase I data used for the H.E.S.S. Galactic Plane Survey. This new method, which correctly identifies the known shell morphologies of the TeV SNRs covered by the survey, HESS J1731-347, RX 1713.7-3946, RCW 86, and Vela Junior, reveals also the existence of three new SNR candidates. All three candidates were extensively studied regarding their morphological, spectral, and multi-wavelength (MWL) properties. HESS J1534-571 was associated with the radio SNR candidate G323.7-1.0, and thus is classified as an SNR. HESS J1912+101 and HESS J1614-518, on the other hand, do not have radio or X-ray counterparts that would permit to identify them firmly as SNRs, and therefore they remain SNR candidates, discovered first at TeV energies as such. Further MWL follow up observations are needed to confirm that these newly discovered SNR candidates are indeed SNRs

    Effect of chemical disorder on NiMnSb investigated by Appearance Potential Spectroscopy: a theoretical study

    Full text link
    The half-Heusler alloy NiMnSb is one of the local-moment ferromagnets with unique properties for future applications. Band structure calculations predict exclusively majority bands at the Fermi level, thus indicating {100%} spin polarization there. As one thinks about applications and the design of functional materials, the influence of chemical disorder in these materials must be considered. The magnetization, spin polarization, and electronic structure are expected to be sensitive to structural and stoichiometric changes. In this contribution, we report on an investigation of the spin-dependent electronic structure of NiMnSb. We studied the influence of chemical disorder on the unoccupied electronic density of states by use of the ab-initio Coherent Potential Approximation method. The theoretical analysis is discussed along with corresponding spin-resolved Appearance Potential Spectroscopy measurements. Our theoretical approach describes the spectra as the fully-relativistic self-convolution of the matrix-element weighted, orbitally resolved density of states.Comment: JPD submitte

    Electron-correlation effects in appearance-potential spectra of Ni

    Full text link
    Spin-resolved and temperature-dependent appearance-potential spectra of ferromagnetic Nickel are measured and analyzed theoretically. The Lander self-convolution model which relates the line shape to the unoccupied part of the local density of states turns out to be insufficient. Electron correlations and orbitally resolved transition-matrix elements are shown to be essential for a quantitative agreement between experiment and theory.Comment: LaTeX, 6 pages, 2 eps figures included, Phys. Rev. B (in press

    'When I click "ok" I become Sassy – I become a girl.' Young people and gender identity: Subverting the ‘body’ in massively multi-player online role-playing games

    Get PDF
    This article is available open access through the publisher’s website through the link below. Copyright @ 2012 Taylor & Francis.This article explores young people's practices in the virtual spaces of online gaming communities. Based on a five-year ethnographic study of virtual worlds, it considers how young people construct and maintain identities within virtual social systems. In particular, the article discusses digital gender practices and considers the potential that these games offer for their young users to engage in alternate gender identities. We argue that these digital spaces offer spaces for the imagination and can enhance agency and, potentially, resistance. However, digital identity is simultaneously no ‘liberated space’ and it incorporates norms and practices that often mirror those of the material world. We argue that this ‘porosity’ is an important tool through which young people come to understand gender identity

    Controller Synthesis for Autonomous Systems Interacting With Human Operators

    Get PDF
    We propose an approach to synthesize control protocols for autonomous systems that account for uncertainties and imperfections in interactions with human operators. As an illustrative example, we consider a scenario involving road network surveillance by an unmanned aerial vehicle (UAV) that is controlled remotely by a human operator but also has a certain degree of autonomy. Depending on the type (i.e., probabilistic and/or nondeterministic) of knowledge about the uncertainties and imperfections in the operatorautonomy interactions, we use abstractions based on Markov decision processes and augment these models to stochastic two-player games. Our approach enables the synthesis of operator-dependent optimal mission plans for the UAV, highlighting the effects of operator characteristics (e.g., workload, proficiency, and fatigue) on UAV mission performance; it can also provide informative feedback (e.g., Pareto curves showing the trade-offs between multiple mission objectives), potentially assisting the operator in decision-making

    Pressure dependence of the Néel and the superconducting transition temperature of CeCo(In0.9Cd0.1)5 studied by thermal expansion

    Get PDF
    We present low-temperature thermal expansion measurements on the nominally 10% Cd doped CeCoIn5. While the superconducting transition temperature is monotonically suppressed, an antiferromagnetic phase evolves in CeCoIn5 by Cd-doping. For the uniaxial pressure dependence of the Néel temperature along c, we find (∂ TN / ∂ p)∥ c = 0.206 K / GPa. The magnetic field dependence (for B ∥ c) of TN is stronger compared to CeRhIn5. As no traces of a superconducting transition are resolved in thermal expansion along the c-axis, we estimate a lower limit of the in-plane pressure dependence to (∂ Tc / ∂ p)⊥ c = 0.38 K / GPa. © 2007 Elsevier B.V. All rights reserved

    Rashba-type spin splitting at Au(111) beyond the Fermi level: the other part of the story

    Full text link
    We present a combined experimental and theoretical study of spin–orbit-induced spin splittings in the unoccupied surface electronic structure of the prototypical Rashba system Au(111). Spin- and angle-resolved inverse-photoemission measurements reveal a Rashba-type spin splitting in the unoccupied part of the L-gap surface state. With increasing momentum parallel to the surface, the spectral intensity is lowered and the spin splitting vanishes as the surface state approaches the band-gap boundary. Furthermore, we observe significantly spin-dependent peak positions and intensities for transitions between unoccupied sp-like bulk bands. Possible reasons for this behavior are considered: initial and final-state effects as well as the transition itself, which is controlled by selection rules depending on the symmetry of the involved states. Based on model calculations, we identify the initial states as origin of the observed Rashba-type spin effects in bulk transitions

    Family memories in the home: contrasting physical and digital mementos

    Get PDF
    We carried out fieldwork to characterise and compare physical and digital mementos in the home. Physical mementos are highly valued, heterogeneous and support different types of recollection. Contrary to expectations, we found physical mementos are not purely representational, and can involve appropriating common objects and more idiosyncratic forms. In contrast, digital mementos were initially perceived as less valuable, although participants later reconsidered this. Digital mementos were somewhat limited in function and expression, largely involving representational photos and videos, and infrequently accessed. We explain these digital limitations and conclude with design guidelines for digital mementos, including better techniques for accessing and integrating these into everyday life, allowing them to acquire the symbolic associations and lasting value that characterise their physical counterparts

    Trolling in asynchronous computer-mediated communication: From user discussions to academic definitions

    Get PDF
    Whilst computer-mediated communication (CMC) can benefit users by providing quick and easy communication between those separated by time and space, it can also provide varying degrees of anonymity that may encourage a sense of impunity and freedom from being held accountable for inappropriate online behaviour. As such, CMC is a fertile ground for studying impoliteness, whether it occurs in response to perceived threat (flaming), or as an end in its own right (trolling). Currently, first and secondorder definitions of terms such as im/politeness (Brown and Levinson 1987; Bousfield 2008; Culpeper 2008; Terkourafi 2008), in-civility (Lakoff 2005), rudeness (Beebe 1995, Kienpointner 1997, 2008), and etiquette (Coulmas 1992), are subject to much discussion and debate, yet the CMC phenomenon of trolling is not adequately captured by any of these terms. Following Bousfield (in press), Culpeper (2010) and others, this paper suggests that a definition of trolling should be informed first and foremost by user discussions. Taking examples from a 172-million-word, asynchronous CMC corpus, four interrelated conditions of aggression, deception, disruption, and success are discussed. Finally, a working definition of trolling is presented

    Valley spin polarization by using the extraordinary Rashba effect on silicon

    Get PDF
    The addition of the valley degree of freedom to a two-dimensional spin-polarized electronic system provides the opportunity to multiply the functionality of next-generation devices. So far, however, such devices have not been realized due to the difficulty to polarize the valleys, which is an indispensable step to activate this degree of freedom. Here we show the formation of 100% spin-polarized valleys by a simple and easy way using the Rashba effect on a system with C-3 symmetry. This polarization, which is much higher than those in ordinary Rashba systems, results in the valleys acting as filters that can suppress the backscattering of spin-charge. The present system is formed on a silicon substrate, and therefore opens a new avenue towards the realization of silicon spintronic devices with high efficiency.X114334Nsciescopu
    corecore