76 research outputs found

    Co-regulated expression of alpha and beta mRNAs encoding HLA-DR surface heterodimers is mediated by the MHCII RNA operon

    Get PDF
    Major histocompatibility complex class II (MHCII) molecules are heterodimeric surface proteins involved in the presentation of exogenous antigens during the adaptive immune response. We demonstrate the existence of a fine level of regulation, coupling the transcription and processing of mRNAs encoding α and β chains of MHCII molecules, mediated through binding of their Untraslated Regions (UTRs) to the same ribonucleoproteic complex (RNP). We propose a dynamic model, in the context of the ‘MHCII RNA operon’ in which the increasing levels of DRA and DRB mRNAs are docked by the RNP acting as a bridge between 5′- and 3′-UTR of the same messenger, building a loop structure and, at the same time, joining the two chains, thanks to shared common predicted secondary structure motifs. According to cell needs, as during immune surveillance, this RNP machinery guarantees a balanced synthesis of DRA and DRB mRNAs and a consequent balanced surface expression of the heterodimer

    Morphological and genetic aspects of Marfan Syndrome as demonstrated by a case of death during pregnancy with the discovery of two de novo missense mutations in the FBN1 gene

    Get PDF
    Marfan Syndrome (MFS) is an autosomal dominant disease caused in most cases by mutations in the FNB1 gene, which encodes for fibrillin 1. MFS does not alway shows typical phenotypic signs. Indeed, the occurrence of sudden death of unknown cause is increasingly seen in young adults without ante mortem preexisting pathology to explain the event. In many cases the diagnosis of Marfan Syndrome (MFS) is carried out post mortem, especially in cases where the disease’s external phenotype is absent. Here is reported a case of a young woman who died during a twin pregnancy investigated with medico-legal and forensic anthropological procedures. The autopsy showed the absence of a typical marfanoid habitus and the presence of a dissecting aneurysm of the aorta with histopathological degeneration of the aortic elastic fibers. The genetic investigation revealed two previously undetected de novo mutations of the FBN1 gene: c.T6181C: p.C2061R and c.G1415A: p.C472Y. This new mutations, together with a comprehensive analysis, demonstrates the existence of a causal relationship between these mutations and the dissecting aneurysm of the aorta. This also stresses the importance of a combined multidisciplinary approach to this condition which includes morphological and genetic studies

    Spheres Derived from Lung Adenocarcinoma Pleural Effusions: Molecular Characterization and Tumor Engraftment

    Get PDF
    Malignant pleural effusions (MPEs) could represent an excellent source to culture a wide variety of cancer cells from different donors. In this study, we set up culture conditions for cancer cells deriving from MPEs of several patients affected by the most frequent form of lung cancer, namely the subset of non small cell lung cancers (NSCLC) classified as Lung Adenocarcinomas (AdenoCa) which account for approximately 40% of lung cancer cases. AdenoCa malignant pleural effusions gave rise to in vitro cultures both in adherent and/or in spheroid conditions in almost all cases analyzed. We characterized in greater detail two samples which showed the most efficient propagation in vitro. In these samples we also compared gene profiles of spheroid vs adherent cultures and identified a set of differentially expressed genes. Finally we achieved efficient tumor engraftment in recipient NOD/SCID mice, also upon inoculation of small number of cells, thus suggesting indirectly the presence of tumor initiating cells

    Allelic variant at −79 (C>T) in CDKN1B (p27Kip1) confers an increased risk of thyroid cancer and alters mRNA levels

    Get PDF
    The aim of this study is to assess if common genetic variants located in the CDKN1B locus, coding for the cell cycle inhibitor p27Kip1, are involved in thyroid cancer susceptibility. Based on the literature and functional predictions, we selected three polymorphisms within the CDKN1B gene (rs2066827 (T326G, V109G), rs34330 (−79C>T) and rs36228499 (−838C>A)) to perform the first case–control study in thyroid cancer involving this locus. We had 649 Spanish patients with sporadic thyroid cancer and 385 healthy representative controls available. Luciferase reporter gene assays, real-time quantitative reverse transcription-PCR and immunoblot experiments were carried out to demonstrate the putative effect of the associated variant. The polymorphism rs34330 (−79C>T) was identified as a risk factor for developing the follicular variant of papillary thyroid carcinoma (FVPTC), fitting a recessive model (odds ratio=2.12; 95% confidence interval=1.09–4.15; P value=0.023). The risk allele (T) of this single nucleotide polymorphism led to a lower transcription rate in cells transfected with a luciferase reporter driven by the polymorphic p27Kip1 promoter (P value T (rs34330) variant as a novel mechanism underlying p27Kip1 downregulation

    Signaling Networks Associated with AKT Activation in Non-Small Cell Lung Cancer (NSCLC): New Insights on the Role of Phosphatydil-Inositol-3 kinase

    Get PDF
    Aberrant activation of PI3K/AKT signalling represents one of the most common molecular alterations in lung cancer, though the relative contribution of the single components of the cascade to the NSCLC development is still poorly defined. In this manuscript we have investigated the relationship between expression and genetic alterations of the components of the PI3K/AKT pathway [KRAS, the catalytic subunit of PI3K (p110α), PTEN, AKT1 and AKT2] and the activation of AKT in 107 surgically resected NSCLCs and have analyzed the existing relationships with clinico-pathologic features. Expression analysis was performed by immunohistochemistry on Tissue Micro Arrays (TMA); mutation analysis was performed by DNA sequencing; copy number variation was determined by FISH. We report that activation of PI3K/AKT pathway in Italian NSCLC patients is associated with high grade (G3–G4 compared with G1–G2; n = 83; p<0.05) and more advanced disease (TNM stage III vs. stages I and II; n = 26; p<0.05). In addition, we found that PTEN loss (41/104, 39%) and the overexpression of p110α (27/92, 29%) represent the most frequent aberration observed in NSCLCs. Less frequent molecular lesions comprised the overexpression of AKT2 (18/83, 22%) or AKT1 (17/96, 18%), and KRAS mutation (7/63, 11%). Our results indicate that, among all genes, only p110α overexpression was significantly associated to AKT activation in NSCLCs (p = 0.02). Manipulation of p110α expression in lung cancer cells carrying an active PI3K allele (NCI-H460) efficiently reduced proliferation of NSCLC cells in vitro and tumour growth in vivo. Finally, RNA profiling of lung epithelial cells (BEAS-2B) expressing a mutant allele of PIK3 (E545K) identified a network of transcription factors such as MYC, FOS and HMGA1, not previously recognised to be associated with aberrant PI3K signalling in lung cancer

    Ferritin Heavy Subunit Silencing Blocks the Erythroid Commitment of K562 Cells via miR-150 up-Regulation and GATA-1 Repression

    No full text
    Erythroid differentiation is a complex and multistep process during which an adequate supply of iron for hemoglobinization is required. The role of ferritin heavy subunit, in this process, has been mainly attributed to its capacity to maintain iron in a non-toxic form. We propose a new role for ferritin heavy subunit (FHC) in controlling the erythroid commitment of K562 erythro-myeloid cells. FHC knockdown induces a change in the balance of GATA transcription factors and significantly reduces the expression of a repertoire of erythroid-specific genes, including α- and γ-globins, as well as CD71 and CD235a surface markers, in the absence of differentiation stimuli. These molecular changes are also reflected at the morphological level. Moreover, the ability of FHC-silenced K562 cells to respond to the erythroid-specific inducer hemin is almost completely abolished. Interestingly, we found that this new role for FHC is largely mediated via regulation of miR-150, one of the main microRNA implicated in the cell-fate choice of common erythroid/megakaryocytic progenitors. These findings shed further insight into the biological properties of FHCand delineate a role in erythroid differentiation where this protein does not act as a mere iron metabolism-related factor but also as a critical regulator of the expression of genes of central relevance for erythropoiesis

    ANXA1 mutation analysis in Italian patients with early onset PD

    No full text
    : Recently, a novel pathogenic variant in Annexin A1 protein (c.4G &gt; A, p.Ala2Thr) has been identified in an Iranian consanguineous family with autosomal recessive parkinsonism. The deficiencies of ANXA1 could lead to extracellular SNCA accumulation, defects in intracellular signaling pathways and synaptic plasticity causing parkinsonism. The aim of this study was to identify rare ANXA1 variants in 95 early-onset PD patients from South Italy. Sequencing analysis of ANXA1 gene revealed only 2 synonymous variants in PD patients (rs1050305, rs149033255). Therefore, we conclude that the recently published ANXA1 mutation is not a common cause of EOPD in Southern Italy
    corecore