58 research outputs found

    Oxidative potential in rural, suburban and city centre atmospheric environments in central Europe

    Get PDF
    Oxidative potential (OP) is an emerging health-related metric which integrates several physicochemical properties of particulate matter (PM) that are involved in the pathogenesis of the diseases resulting from exposure to PM. Daily PM2.5-fraction aerosol samples collected in the rural background of the Carpathian Basin and in the suburban area and centre of its largest city of Budapest in each season over 1 year were utilised to study the OP at the related locations for the first time. The samples were analysed for particulate matter mass, main carbonaceous species, levoglucosan and 20 chemical elements. The resulting data sets were subjected to positive matrix factorisation to derive the main aerosol sources. Biomass burning (BB), suspended dust, road traffic, oil combustion mixed with coal combustion and long-range transport, vehicle metal wear, and mixed industrial sources were identified. The OP of the sample extracts in simulated lung fluid was determined by ascorbic acid (AA) and dithiothreitol (DTT) assays. The comparison of the OP data sets revealed some differences in the sensitivities of the assays. In the heating period, both the OP and PM mass levels were higher than in spring and summer, but there was a clear misalignment between them. In addition, the heating period : non-heating period OP ratios in the urban locations were larger than for the rural background by factors of 2–4. The OP data sets were attributed to the main aerosol sources using multiple linear regression with the weighted least squares approach. The OP was unambiguously dominated by BB at all sampling locations in winter and autumn. The joint effects of motor vehicles involving the road traffic and vehicle metal wear played the most important role in summer and spring, with considerable contributions from oil combustion and resuspended dust. In winter, there is temporal coincidence between the most severe daily PM health limit exceedances in the whole Carpathian Basin and the chemical PM composition causing larger OP. Similarly, in spring and summer, there is a spatial coincidence in Budapest between the urban hotspots of OP-active aerosol constituents from traffic and the high population density in central quarters. These features offer possibilities for more efficient season-specific air quality regulations focusing on well-selected aerosol sources or experimentally determined OP, rather than on PM mass in general.</p

    Evaluating atmospheric pollutants from urban buses under real-world conditions : Implications of the main public transport mode in São Paulo, Brazil

    Get PDF
    The broad expanse of the urban metropolitan area of São Paulo (MASP) has made buses, the predominant public transport mode for commuters in the city. In 2016, the bus fleet in the MASP reached 56,354 buses and it was responsible for more than 12 million daily trips. Here, we evaluate for the first time, the emission profile of gaseous and particulate pollutants from buses running on 7% biodiesel + 93% petroleum diesel and their spatial distribution in the MASP. This novel study, based on four bus terminal experiments, provides an extensive analysis of atmospheric pollutants of interest to public health and climate changes, such as CO2, CO, NOx, VOCs, PM10, PM2.5 and their constituents (black carbon (BC) and elements). Our results suggest that the renovation of the bus fleet from Euro II to Euro V and the incorporation of electric buses had a noticeable impact (by a factor of up to three) on the CO2 emissions and caused a decrease in NO emissions, by a factor of four to five. In addition, a comparison with previous Brazilian studies, shows that the newer bus fleet in the MASP emits fewer particles. Emissions from the public transport sector have implications for public health and air quality, not only by introducing reactive pollutants into the atmosphere but also by exposing the commuters to harmful concentrations. Our findings make a relevant contribution to the understanding of emissions from diesel-powered buses and about the impact of these new vehicular technologies on the air quality in the MASP

    Caracterización espacial por riesgo ambiental en la ciudad de Concepción del Uruguay con herramientas TIG’s

    Get PDF
    El riesgo ambiental se definió, a los efectos de este proyecto, como la combinación entre una amenaza natural o antrópica y que puede o no, estar relacionada con alguna actividad productiva a la que está expuesta la población y condicionada según la vulnerabilidad social existente. El problema que orientó esta investigación fue sostener que en Concepción del Uruguay, la ausencia de información socio-ambiental sistematizada influye en la toma de decisiones desde la gestión pública, no respondiendo básicamente a las necesidades de los sectores sociales más vulnerables.El objetivo primordial de la investigación fue el de conocer y espacializar las zonas de riesgo ambiental en la ciudad de Concepción del Uruguay. Para ello se identificó y espacializó la vulnerabilidad social de la población, así como alguna de las amenazas ambientales presentes. Como técnicas se aplicaron Tecnologías de Información Geográfica (TIG´s): teledetección, sistemas de información geográfica y manejo y análisis de bases de datos geocodificados.El producto del trabajo fue la caracterización ambiental de la ciudad de Concepción del Uruguay, mediante la elaboración de los mapas de riesgo ambiental y sus datos asociados, a partir de la articulación de los mapas de amenazas ambientales con los realizados a partir de los índices de vulnerabilidad social

    Seasonal trends of formaldehyde and acetaldehyde in the megacity of São Paulo

    Get PDF
    The Metropolitan Area of São Paulo (MASP) is the largest megacity in South America, with 21 million inhabitants and more than 8 million vehicles. Those vehicles run on a complex fuel mix, with ethanol accounting for nearly 50% of all fuel sold. That has made the MASP a unique case study to assess the impact of biofuel use on air quality. Currently, the greatest challenge in terms of improving air quality is controlling the formation of secondary pollutants such as ozone, which represents the main air pollution problem in the MASP.We evaluated the temporal trends in the concentrations of ozone, its precursors (formaldehyde, acetaldehyde, and NO2), CO, and NO, from 2012 to 2016. Formaldehyde and acetaldehyde concentrations were frequently higher in winter than in other seasons, showing the importance of meteorological conditions to the distribution of atmospheric pollutants in the MASP.We found no clear evidence that the recent growth in ethanol consumption in Brazil has affected acetaldehyde concentrations, which are associated with emissions from ethanol combustion. In fact, the formaldehyde/acetaldehyde ratio remained relatively constant over the period studied, despite the change in the fuel consumption profile in the MASP

    Molecular composition of clouds: a comparison between samples collected at tropical (Réunion Island, France) and mid-north (Puy de Dôme, France) latitudes

    Get PDF
    The composition of dissolved organic matter of cloud water has been investigated through non-targeted high-resolution mass spectrometry on only a few samples that were mostly collected in the Northern Hemisphere in the USA, Europe and China. There remains, therefore, a lack of measurements for clouds located in the Southern Hemisphere, under tropical conditions and influenced by forest emissions. As a matter of fact, the comparison of the composition of clouds collected in different locations is challenging since the methodology for the analysis and data treatment is not standardized. In this work, the chemical composition of three samples collected at Réunion Island (REU) during the BIO-MAÏDO field campaign, in the Indian Ocean, with influences from marine, anthropogenic and biogenic (tropical) emissions, is investigated and compared to the chemical composition of samples collected at the Puy de Dôme (PUY) observatory in France. The same methodology of analysis and data treatment was employed, producing a unique dataset for the investigation of the molecular composition of organic matter in cloud water. Besides the analysis of elemental composition, we investigated the carbon oxidation state (OSC) of dissolved organic matter, finding that overall samples collected at PUY are more oxidized than those collected at REU. Molecular formulas were also classified based on stoichiometric elemental ratios, showing the high frequency and abundance of reduced organic compounds, classified as lipids (LipidC), in this matrix, which led to a search for terpene oxidation products in cloud water samples. To better discriminate between samples collected at PUY and REU, statistical analysis (principal component analysis and agglomerative hierarchical clustering) was performed on the ensemble of molecular formulas and their intensities. Samples collected at REU have a different composition from samples collected at PUY, which is mainly linked to different primary sources, the processing of organic matter in cloud water and the influence of different primary emissions at the two locations.</p

    Disentangling vehicular emission impact on urban air pollution using ethanol as a tracer

    Get PDF
    The Sao Paulo Metropolitan Area is a unique case worldwide due to the extensive use of biofuel, particularly ethanol, by its large fleet of nearly 8 million cars. Based on source apportionment analysis of Organic Aerosols in downtown Sao Paulo, and using ethanol as tracer of passenger vehicles, we have identified primary emissions from light-duty-vehicles (LDV) and heavy-duty-vehicles (HDV), as well as secondary process component. Each of those factors mirror a relevant primary source or secondary process in this densely occupied area. Using those factors as predictors in a multiple linear regression analysis of a wide range of pollutants, we have quantified the role of primary LDV or HDV emissions, as well as atmospheric secondary processes, on air quality degradation. Results show a significant contribution of HDV emissions, despite contributing only about 5% of vehicles number in the region. The latter is responsible, for example, of 40% and 47% of benzene and black carbon atmospheric concentration, respectively. This work describes an innovative use of biofuel as a tracer of passenger vehicle emissions, allowing to better understand the role of vehicular sources on air quality degradation in one of most populated megacities worldwide

    Assessing the role of anthropogenic and biogenic sources on PM₁ over southern West Africa using aircraft measurements

    Get PDF
    As part of the Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA) project, an airborne campaign was designed to measure a large range of atmospheric constituents, focusing on the effect of anthropogenic emissions on regional climate. The presented study details results of the French ATR42 research aircraft, which aimed to characterize gas-phase, aerosol and cloud properties in the region during the field campaign carried out in June/July 2016 in combination with the German Falcon 20 and the British Twin Otter aircraft. The aircraft flight paths covered large areas of Benin, Togo, Ghana and Côte d\u27Ivoire, focusing on emissions from large urban conurbations such as Abidjan, Accra and Lomé, as well as remote continental areas and the Gulf of Guinea. This paper focuses on aerosol particle measurements within the boundary layer (<  2000 m), in particular their sources and chemical composition in view of the complex mix of both biogenic and anthropogenic emissions, based on measurements from a compact time-of-flight aerosol mass spectrometer (C-ToF-AMS) and ancillary instrumentation. Background concentrations (i.e. outside urban plumes) observed from the ATR42 indicate a fairly polluted region during the time of the campaign, with average concentrations of carbon monoxide of 131 ppb, ozone of 32 ppb, and aerosol particle number concentration ( >  15 nm) of 735 cm−3 stp. Regarding submicron aerosol composition (considering non-refractory species and black carbon, BC), organic aerosol (OA) is the most abundant species contributing 53 %, followed by SO4 (27 %), NH4 (11 %), BC (6 %), NO3 (2 %) and minor contribution of Cl (<  0.5 %). Average background PM1 in the region was 5.9 µg m−3 stp. During measurements of urban pollution plumes, mainly focusing on the outflow of Abidjan, Accra and Lomé, pollutants are significantly enhanced (e.g. average concentration of CO of 176 ppb, and aerosol particle number concentration of 6500 cm−3 stp), as well as PM1 concentration (11.9 µg m−3 stp). Two classes of organic aerosols were estimated based on C-ToF-AMS: particulate organic nitrates (pONs) and isoprene epoxydiols secondary organic aerosols (IEPOX–SOA). Both classes are usually associated with the formation of particulate matter through complex interactions of anthropogenic and biogenic sources. During DACCIWA, pONs have a fairly small contribution to OA (around 5 %) and are more associated with long-range transport from central Africa than local formation. Conversely, IEPOX–SOA provides a significant contribution to OA (around 24 and 28 % under background and in-plume conditions). Furthermore, the fractional contribution of IEPOX–SOA is largely unaffected by changes in the aerosol composition (particularly the SO4 concentration), which suggests that IEPOX–SOA concentration is mainly driven by pre-existing aerosol surface, instead of aerosol chemical properties. At times of large in-plume SO4 enhancements (above 5 µg m−3), the fractional contribution of IEPOX–SOA to OA increases above 50 %, suggesting only then a change in the IEPOX–SOA-controlling mechanism. It is important to note that IEPOX–SOA constitutes a lower limit to the contribution of biogenic OA, given that other processes (e.g. non-IEPOX isoprene, monoterpene SOA) are likely in the region. Given the significant contribution to aerosol concentration, it is crucial that such complex biogenic–anthropogenic interactions are taken into account in both present-day and future scenario models of this fast-changing, highly sensitive region

    Anthropogenic VOCs in Abidjan, southern West Africa : From source quantification to atmospheric impacts

    Get PDF
    Several field campaigns were conducted in the framework of the Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA) project to measure a broad range of atmospheric constituents. Here we present the analysis of an unprecedented and comprehensive dataset integrating up to 56 volatile organic compounds (VOCs) from ambient sites and emission sources. VOCs were collected on multi-sorbent tubes in the coastal city of Abidjan, Côte d'Ivoire, in winter and summer 2016 and later analysed by gas chromatography coupled with flame ionization and mass spectrometer detectors (GC-FID and GC-MS) at the laboratory. The comparison between VOC emission source profiles and ambient profiles suggests the substantial impact of two-stroke motorized two-wheel vehicles and domestic fires on the composition of Abidjan's atmosphere. However, despite high VOC concentrations near-source, moderate ambient levels were observed (by factors of 10 to 4000 lower), similar to the concentrations observed in northern mid-latitude urban areas. Besides photochemistry, the reported high wind speeds seem to be an essential factor that regulates air pollution levels in Abidjan. Emission ratios (ΔVOC/CO) were established based on real-world measurements achieved for a selected number of representative combustion sources. Maximum measured molar mass emissions were observed from two-wheel vehicles, surpassing other regional sources by 2 orders of magnitude. Local practices like waste burning also make a significant contribution to VOC emissions, higher than those from light-duty vehicles by 1.5 to 8 orders of magnitude. These sources also largely govern the VOC's atmospheric impacts in terms of OH reactivity, secondary organic aerosol formation (SOAP), and photochemical ozone creation potential (POCP). While the contribution of aromatics dominates the atmospheric impact, our measurements reveal the systematic presence of anthropogenic terpenoids in all residential combustion sectors. Finally, emission factors were used to retrieve and quantify VOC emissions from the main anthropogenic source sectors at the national level. Our detailed estimation of VOC emissions suggests that the road transport sector is the dominant source in Côte d'Ivoire, emitting around 1200Gg yr-1 of gas-phase VOCs. These new estimates are 100 and 160 times larger than global inventory estimations from MACCity or EDGAR (v4.3.2), respectively. Additionally, the residential sector is largely underestimated in the global emission inventories, by factors of 13 to 43. Considering only Côte d'Ivoire, these new estimates for VOCs are 3 to 6 times higher than the whole of Europe. Given the significant underestimation of VOC emissions from the transport and residential sectors in Côte d'Ivoire, there is an urgent need to build more realistic and region-specific emission inventories for the entire West African region. This might be true not only for VOCs, but also for all atmospheric pollutants. The lack of waste burning, wood fuel burning and charcoal burning, and fabrication representation in regional inventories also needs to be addressed, particularly in low-income areas where these types of activities are ubiquitous sources of VOC emissions
    corecore