77 research outputs found

    HOPPSIGEN: a database of human and mouse processed pseudogenes

    Get PDF
    Processed pseudogenes result from reverse transcribed mRNAs. In general, because processed pseudogenes lack promoters, they are no longer functional from the moment they are inserted into the genome. Subsequently, they freely accumulate substitutions, insertions and deletions. Moreover, the ancestral structure of processed pseudogenes could be easily inferred using the sequence of their functional homologous genes. Owing to these characteristics, processed pseudogenes represent good neutral markers for studying genome evolution. Recently, there is an increasing interest for these markers, particularly to help gene prediction in the field of genome annotation, functional genomics and genome evolution analysis (patterns of substitution). For these reasons, we have developed a method to annotate processed pseudogenes in complete genomes. To make them useful to different fields of research, we stored them in a nucleic acid database after having annotated them. In this work, we screened both mouse and human complete genomes from ENSEMBL to find processed pseudogenes generated from functional genes with introns. We used a conservative method to detect processed pseudogenes in order to minimize the rate of false positive sequences. Within processed pseudogenes, some are still having a conserved open reading frame and some have overlapping gene locations. We designated as retroelements all reverse transcribed sequences and more strictly, we designated as processed pseudogenes, all retroelements not falling in the two former categories (having a conserved open reading or overlapping gene locations). We annotated 5823 retroelements (5206 processed pseudogenes) in the human genome and 3934 (3428 processed pseudogenes) in the mouse genome. Compared to previous estimations, the total number of processed pseudogenes was underestimated but the aim of this procedure was to generate a high-quality dataset. To facilitate the use of processed pseudogenes in studying genome structure and evolution, DNA sequences from processed pseudogenes, and their functional reverse transcribed homologs, are now stored in a nucleic acid database, HOPPSIGEN. HOPPSIGEN can be browsed on the PBIL (PĂ´le Bioinformatique Lyonnais) World Wide Web server (http://pbil.univ-lyon1.fr/) or fully downloaded for local installation

    Identitag, a relational database for SAGE tag identification and interspecies comparison of SAGE libraries

    Get PDF
    BACKGROUND: Serial Analysis of Gene Expression (SAGE) is a method of large-scale gene expression analysis that has the potential to generate the full list of mRNAs present within a cell population at a given time and their frequency. An essential step in SAGE library analysis is the unambiguous assignment of each 14 bp tag to the transcript from which it was derived. This process, called tag-to-gene mapping, represents a step that has to be improved in the analysis of SAGE libraries. Indeed, the existing web sites providing correspondence between tags and transcripts do not concern all species for which numerous EST and cDNA have already been sequenced. RESULTS: This is the reason why we designed and implemented a freely available tool called Identitag for tag identification that can be used in any species for which transcript sequences are available. Identitag is based on a relational database structure in order to allow rapid and easy storage and updating of data and, most importantly, in order to be able to precisely define identification parameters. This structure can be seen like three interconnected modules : the first one stores virtual tags extracted from a given list of transcript sequences, the second stores experimental tags observed in SAGE experiments, and the third allows the annotation of the transcript sequences used for virtual tag extraction. It therefore connects an observed tag to a virtual tag and to the sequence it comes from, and then to its functional annotation when available. Databases made from different species can be connected according to orthology relationship thus allowing the comparison of SAGE libraries between species. We successfully used Identitag to identify tags from our chicken SAGE libraries and for chicken to human SAGE tags interspecies comparison. Identitag sources are freely available on web site. CONCLUSIONS: Identitag is a flexible and powerful tool for tag identification in any single species and for interspecies comparison of SAGE libraries. It opens the way to comparative transcriptomic analysis, an emerging branch of biology

    Bioinformatic screening of human ESTs for differentially expressed genes in normal and tumor tissues

    Get PDF
    BACKGROUND: Owing to the explosion of information generated by human genomics, analysis of publicly available databases can help identify potential candidate genes relevant to the cancerous phenotype. The aim of this study was to scan for such genes by whole-genome in silico subtraction using Expressed Sequence Tag (EST) data. METHODS: Genes differentially expressed in normal versus tumor tissues were identified using a computer-based differential display strategy. Bcl-xL, an anti-apoptotic member of the Bcl-2 family, was selected for confirmation by western blot analysis. RESULTS: Our genome-wide expression analysis identified a set of genes whose differential expression may be attributed to the genetic alterations associated with tumor formation and malignant growth. We propose complete lists of genes that may serve as targets for projects seeking novel candidates for cancer diagnosis and therapy. Our validation result showed increased protein levels of Bcl-xL in two different liver cancer specimens compared to normal liver. Notably, our EST-based data mining procedure indicated that most of the changes in gene expression observed in cancer cells corresponded to gene inactivation patterns. Chromosomes and chromosomal regions most frequently associated with aberrant expression changes in cancer libraries were also determined. CONCLUSION: Through the description of several candidates (including genes encoding extracellular matrix and ribosomal components, cytoskeletal proteins, apoptotic regulators, and novel tissue-specific biomarkers), our study illustrates the utility of in silico transcriptomics to identify tumor cell signatures, tumor-related genes and chromosomal regions frequently associated with aberrant expression in cancer

    In silico whole-genome screening for cancer-related single-nucleotide polymorphisms located in human mRNA untranslated regions

    Get PDF
    BACKGROUND: A promising application of the huge amounts of genetic data currently available lies in developing a better understanding of complex diseases, such as cancer. Analysis of publicly available databases can help identify potential candidates for genes or mutations specifically related to the cancer phenotype. In spite of their huge potential to affect gene function, no systematic attention has been paid so far to the changes that occur in untranslated regions of mRNA. RESULTS: In this study, we used Expressed Sequence Tag (EST) databases as a source for cancer-related sequence polymorphism discovery at the whole-genome level. Using a novel computational procedure, we focused on the identification of untranslated region (UTR)-localized non-coding Single Nucleotide Polymorphisms (UTR-SNPs) significantly associated with the tumoral state. To explore possible relationships between genetic mutation and phenotypic variation, bioinformatic tools were used to predict the potential impact of cancer-associated UTR-SNPs on mRNA secondary structure and UTR regulatory elements. We provide a comprehensive and unbiased description of cancer-associated UTR-SNPs that may be useful to define genotypic markers or to propose polymorphisms that can act to alter gene expression levels. Our results suggest that a fraction of cancer-associated UTR-SNPs may have functional consequences on mRNA stability and/or expression. CONCLUSION: We have undertaken a comprehensive effort to identify cancer-associated polymorphisms in untranslated regions of mRNA and to characterize putative functional UTR-SNPs. Alteration of translational control can change the expression of genes in tumor cells, causing an increase or decrease in the concentration of specific proteins. Through the description of testable candidates and the experimental validation of a number of UTR-SNPs discovered on the secreted protein acidic and rich in cysteine (SPARC) gene, this report illustrates the utility of a cross-talk between in silico transcriptomics and cancer genetics

    The Sex-Specific Impact of Meiotic Recombination on Nucleotide Composition

    Get PDF
    Meiotic recombination is an important evolutionary force shaping the nucleotide landscape of genomes. For most vertebrates, the frequency of recombination varies slightly or considerably between the sexes (heterochiasmy). In humans, male, rather than female, recombination rate has been found to be more highly correlated with the guanine and cytosine (GC) content across the genome. In the present study, we review the results in human and extend the examination of the evolutionary impact of heterochiasmy beyond primates to include four additional eutherian mammals (mouse, dog, pig, and sheep), a metatherian mammal (opossum), and a bird (chicken). Specifically, we compared sex-specific recombination rates (RRs) with nucleotide substitution patterns evaluated in transposable elements. Our results, based on a comparative approach, reveal a great diversity in the relationship between heterochiasmy and nucleotide composition. We find that the stronger male impact on this relationship is a conserved feature of human, mouse, dog, and sheep. In contrast, variation in genomic GC content in pig and opossum is more strongly correlated with female, rather than male, RR. Moreover, we show that the sex-differential impact of recombination is mainly driven by the chromosomal localization of recombination events. Independent of sex, the higher the RR in a genomic region and the longer this recombination activity is conserved in time, the stronger the bias in nucleotide substitution pattern, through such mechanisms as biased gene conversion. Over time, this bias will increase the local GC content of the region
    • …
    corecore