38 research outputs found

    Excavation along the easternmost frontier of the LBK in NE-Hungary at Apc-Berekalja I (2008–2009)

    Get PDF
    The topographical position and size of the site, the number of detected houses, the presence of the early phase make the Apc-Berekalja I settlement one of the most significant sites of the LBK in Hungary. The ongoing processing of the excavation data provided already some very important observations. The geoarchaeological results demonstrated the presence of the in situ soil of the Neolithic period and effects of floods on the settlement. The study of the chipped and ground stone material coming from the Neolithic features revealed no conspicuous changes in the lithic industry of the settlement from the pre-Notenkopf to Želiezovce phases of the LBK. Lithic raw materials came exclusively from territories to the east of the site, which is an evidence of the isolation of the LBK groups that inhabited Apc. | Földrajzi helyzete, a lelőhely mérete, a megfigyelt házak száma és a korai fázis megléte alapján Apc-Berekalja I. az egyik legjelentősebb magyarországi VK-település. Az ásatási adatok még folyamatban lévő feldolgozása során közlésre méltó eredmények születtek. A geoarcheológiai vizsgálatok kimutatták egy neolitikus korú talaj in situ meglétét, valamint a települést sújtó áradásokat. A neolitikus korú objektumokból származó pattintott és szerszámkövek a település fennállása alatt a kőipar lényegi változatlanságáról tanúskodnak a VK korai időszakától a zselízi fázisáig. A településen élők a kőnyersanyagokat kizárólag a keletre eső területekről szerezték be, ami az itt lakó csoport izoláltságát igazolja

    Dating the emergence of dairying by the first farmers of Central Europe using 14C analysis of fatty acids preserved in pottery vessels

    Get PDF
    Direct, accurate, and precise dating of archaeological pottery vessels is now achievable using a recently developed approach based on the radiocarbon dating of purified molecular components of food residues preserved in the walls of pottery vessels. The method targets fatty acids from animal fat residues, making it uniquely suited for directly dating the inception of new food commodities in prehistoric populations. Here, we report a large-scale application of the method by directly dating the introduction of dairying into Central Europe by the Linearbandkeramik (LBK) cultural group based on dairy fat residues. The radiocarbon dates (n=27) from the 54th century BC from the western and eastern expansion of the LBK suggest dairy exploitation arrived with the first settlers in the respective regions and were not gradually adopted later. This is particularly significant, as contemporaneous LBK sites showed an uneven distribution of dairy exploitation. Significantly, our findings demonstrate the power of directly dating the introduction of new food commodities, hence removing taphonomic uncertainties when assessing this indirectly based on associated cultural materials or other remainsPeer reviewe

    Stable carbon and nitrogen isotopes identify nuanced dietary changes from the Bronze and Iron Ages on the Great Hungarian Plain

    Get PDF
    The Great Hungarian Plain (GHP) served as a geographic funnel for population mobility throughout prehistory. Genomic and isotopic research demonstrates non-linear genetic turnover and technological shifts between the Copper and Iron Ages of the GHP, which influenced the dietary strategies of numerous cultures that intermixed and overlapped through time. Given the complexities of these prehistoric cultural and demographic processes, this study aims to identify and elucidate diachronic and culture-specific dietary signatures. We report on stable carbon and nitrogen isotope ratios from 74 individuals from nineteen sites in the GHP dating to a ~ 3000-year time span between the Early Bronze and Early Iron Ages. The samples broadly indicate a terrestrial C 3 diet with nuanced differences amongst populations and through time, suggesting exogenous influences that manifested in subsistence strategies. Slightly elevated δ 15 N values for Bronze Age samples imply higher reliance on protein than in the Iron Age. Interestingly, the Füzesabony have carbon values typical of C 4 vegetation indicating millet consumption, or that of a grain with comparable δ 13 C ratios, which corroborates evidence from outside the GHP for its early cultivation during the Middle Bronze Age. Finally, our results also suggest locally diverse subsistence economies for GHP Scythians

    Seasonal calving in European Prehistoric cattle and its impacts on milk availability and cheese-making:impacts on milk availability and cheese-making

    Get PDF
    Present-day domestic cattle are reproductively active throughout the year, which is a major asset for dairy production. Large wild ungulates, in contrast, are seasonal breeders, as were the last historic representatives of the aurochs, the wild ancestors of cattle. Aseasonal reproduction in cattle is a consequence of domestication and herding, but exactly when this capacity developed in domestic cattle is still unknown and the extent to which early farming communities controlled the seasonality of reproduction is debated. Seasonal or aseasonal calving would have shaped the socio-economic practices of ancient farming societies differently, structuring the agropastoral calendar and determining milk availability where dairying is attested. In this study, we reconstruct the calving pattern through the analysis of stable oxygen isotope ratios of cattle tooth enamel from 18 sites across Europe, dating from the 6th mill. cal BC (Early Neolithic) in the Balkans to the 4th mill. cal BC (Middle Neolithic) in Western Europe. Seasonal calving prevailed in Europe between the 6th and 4th millennia cal BC. These results suggest that cattle agropastoral systems in Neolithic Europe were strongly constrained by environmental factors, in particular forage resources. The ensuing fluctuations in milk availability would account for cheese-making, transforming a seasonal milk supply into a storable product.info:eu-repo/semantics/publishedVersio

    An integrative skeletal and paleogenomic analysis of stature variation suggests relatively reduced health for early european farmers

    Get PDF
    Human culture, biology, and health were shaped dramatically by the onset of agriculture ∼12,000 y B.P. This shift is hypothesized to have resulted in increased individual fitness and population growth as evidenced by archaeological and population genomic data alongside a decline in physiological health as inferred from skeletal remains. Here, we consider osteological and ancient DNA data from the same prehistoric individuals to study human stature variation as a proxy for health across a transition to agriculture. Specifically, we compared “predicted” genetic contributions to height from paleogenomic data and “achieved” adult osteological height estimated from long bone measurements for 167 individuals across Europe spanning the Upper Paleolithic to Iron Age (∼38,000 to 2,400 B.P.). We found that individuals from the Neolithic were shorter than expected (given their individual polygenic height scores) by an average of −3.82 cm relative to individuals from the Upper Paleolithic and Mesolithic (P = 0.040) and −2.21 cm shorter relative to post-Neolithic individuals (P = 0.068), with osteological vs. expected stature steadily increasing across the Copper (+1.95 cm relative to the Neolithic), Bronze (+2.70 cm), and Iron (+3.27 cm) Ages. These results were attenuated when we additionally accounted for genome-wide genetic ancestry variation: for example, with Neolithic individuals −2.82 cm shorter than expected on average relative to pre-Neolithic individuals (P = 0.120). We also incorporated observations of paleopathological indicators of nonspecific stress that can persist from childhood to adulthood in skeletal remains into our model. Overall, our work highlights the potential of integrating disparate datasets to explore proxies of health in prehistory.info:eu-repo/semantics/publishedVersio
    corecore