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Stable carbon and nitrogen 
isotopes identify nuanced dietary 
changes from the Bronze and Iron 
Ages on the Great Hungarian Plain
Ashley McCall  1,19*, Beatriz Gamarra2,3, Kellie Sara Duffett Carlson4,5, Zsolt Bernert6, 
Andrea Cséki7, Piroska Csengeri8, László Domboróczki9, Anna Endrődi10, 
Magdolna Hellebrandt8, Antónia Horváth8, Ágnes Király11, Krisztián Kiss6,12, Judit Koós8, 
Péter Kovács13, Kitti Köhler11, László Szolnoki14, Zsuzsanna K. Zoffmann15,20, 
Kendra Sirak16,17, Tamás Szeniczey12, János Dani14, Tamás Hajdu  12,18* & Ron Pinhasi 
4,5,18*

The Great Hungarian Plain (GHP) served as a geographic funnel for population mobility throughout 
prehistory. Genomic and isotopic research demonstrates non-linear genetic turnover and 
technological shifts between the Copper and Iron Ages of the GHP, which influenced the dietary 
strategies of numerous cultures that intermixed and overlapped through time. Given the complexities 
of these prehistoric cultural and demographic processes, this study aims to identify and elucidate 
diachronic and culture-specific dietary signatures. We report on stable carbon and nitrogen isotope 
ratios from 74 individuals from nineteen sites in the GHP dating to a ~ 3000-year time span between 
the Early Bronze and Early Iron Ages. The samples broadly indicate a terrestrial C3 diet with nuanced 
differences amongst populations and through time, suggesting exogenous influences that manifested 
in subsistence strategies. Slightly elevated δ15N values for Bronze Age samples imply higher reliance 
on protein than in the Iron Age. Interestingly, the Füzesabony have carbon values typical of C4 
vegetation indicating millet consumption, or that of a grain with comparable δ13C ratios, which 
corroborates evidence from outside the GHP for its early cultivation during the Middle Bronze Age. 
Finally, our results also suggest locally diverse subsistence economies for GHP Scythians.

Located centrally and comprising the majority of the Carpathian Basin, the Great Hungarian Plain (GHP) forms a 
lowland confluence connecting the Balkans, Pontic Steppe, and Central Europe1,2. The GHP acted as a geographic 
funnel for population movement whereby new people and their ideas and ways of life, including subsistence 
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strategies, migrated through Europe. As such, it functioned as a region of major cultural and technological 
transition throughout prehistory3,4. It is thus a crucial region for identifying and investigating dietary trends 
between prehistoric time periods and cultures. We report on carbon and nitrogen stable isotope values from 74 
individuals from nineteen sites in the GHP (Fig. 1) dating to a ~ 3000-year transect between the Early Bronze 
and Early Iron Ages (Table 1). Specifically, we address two main questions: (1) Can nuanced dietary changes be 
detected across millennia? (2) If changes are detected, what do they imply regarding prehistoric trans-Carpathian 
cultural communication and trade?

Stable Isotopes.  The application of stable isotopes to prehistoric dietary analyses is complex as many fac-
tors affect the ratios obtained from samples5–9. In brief, organisms incorporate carbon and nitrogen from diet 
material. For carbon, most plants fall under one of two categories (C3 and C4) based on their photosynthetic 
pathway, which makes it possible to distinguish general plant groups. C3 plants, which include temperate grasses 
and domesticated cereals from terrestrial ecosystems, exhibit carbon isotope values (13C/12C ratio compared 
to the standard VPDB or δ13C) from − 38 parts per mil (‰) to − 22‰, with a mean of − 26.5‰10–12. C4 plants, 
such as maize, sorghum, and millet, exhibit higher δ13C ratios, ranging between − 21 and − 9‰, with a mean 
of − 12.5‰10,13,14. Dietary nitrogen (15 N/14 N ratio compared to the standard AIR or δ15N) is incorporated via 
protein at a stepwise factor of about + 3 to 5‰15–17. Plants in some terrestrial ecosystems can range between − 15 
and − 10‰18; however, aquatic resources—including freshwater—can exhibit comparatively 15 N-enriched values 
due to the relative complexity of the foodweb19,20. Moreover, both nitrogen and carbon isotope ratios are affected 
by climate21–23, soil conditions24,25, elevation26, water stress27,28, health of the individual29–31, and breastfeeding8. 
Lastly, milk consumption, not unlike breastfeeding, augments δ15N values much like that seen in other dietary 
trophic level increases32.

Figure 1.   Map showing the location of sites. 1. Ongaújfalu-Állami gazdaság, 2. Konyár-Pocsaji műút, 3. 
Apc-Berekalja I, 4. Szigetszentmiklós-Üdülősor, 5. Kompolt-Kígyósér, 6. Mezőzombor-Községi temető, 7. 
Mezőkeresztes-Csincse-tanya, 8. Nagyrozvágy-Pap-domb, 9. Vatta-Dobogó, 10. Ófehértó-Almezői dűlő, 11. 
Felsődobsza site 2, 12. Köröm-Kápolnadomb, 13. Mezőkeresztes, 14. Mezőkeresztes-Cet halom M3-10, 15. 
Oszlár-Nyárfaszög, 16. Pácin-Alsókenderszer, 17. Ludas-Varjú-dűlő, 18. Kesznyéten-Szérűskert, 19. Szikszó-Hell 
Ring. Generic Mapping Tools 4.5.1371 and the topographic ETOPO dataset72 were used to create this map.

Table 1.   Summary of the prehistoric time periods and their associated cultures and subsistence practices in 
the GHP. Adapted from Gamarra et al.58.

Time period Date range Associated sampled cultures Subsistence practices

Early Bronze Age 2600 to 2000/1900 BCE Nyírség, Proto-Nagyrév, Bell Beaker, Hatvan Intensive crop cultivation (barley, wheat, legumes) and animal husbandry

Middle Bronze Age 2000/1900 to 1450/1400 BCE Füzesabony, Otomani/Ottomány Intensive crop cultivation (barley, einkorn, emmer, legumes, rye, legumes) 
and animal husbandry

Late Bronze Age 1450/1400 to 800/900 BCE Piliny/Kyjatice, pre-Gáva, Gáva Intensive crop cultivation (einkorn, emmer, barley, legumes); common 
millet as staple crop

Early Iron Age 800/900 to 650 BCE Pre-Scythian (Mezőcsát), Scythian (Vekerzug) Pastoral/semi-nomadism/transhuman pastoralism; stockbreeding; crop 
cultivation

Middle Iron Age 650 to 450 BCE Scythian (Vekerzug) Pastoral/semi-nomadism/transhuman pastoralism; stockbreeding; crop 
cultivation
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Cultural and dietary context.  Animal husbandry, primarily of cattle, was the predominant subsist-
ence practice during the Middle Copper Age of people migrating to the Carpathian Basin from the Eastern 
Steppe33–35. The contemporaneous cultures of the Late Copper Age, including the Baden, Vučedol, and Coţofeni, 
continued the tradition of animal husbandry and land cultivation35–37. A transformation from the ‘monolithic’ 
Baden culture to more varied and smaller regional Bronze Age communities was shaped either by internal devel-
opments or foreign influences, including population movement, of, for example, the Yamnaya, who arrived from 
the east during the Transitional Period (~ 2800 to 2600 BCE)38–40. This was followed by the expansion of the Bell 
Beaker who migrated from the west (~ 2500 BCE)38,41, and was accompanied by several independent cultures 
(e.g., Makó-Kosihy-Caka, Nagyrév, Somogyvár-Vinkovici), all practicing intensive cereal cultivation and animal 
husbandry42. However, only small groups settled along Danube River routes38–40.

The transition from the Early Bronze to Middle Bronze Age is marked by the development of the more 
sedentary Hatvan, Otomani/Ottomány, and Füzesabony cultures, all of whom occupied tells36,37,39,41,43–45. These 
groups and others coexisted for centuries, although not necessarily peacefully, until the end of the Middle Bronze 
Age37,46. The Füzesabony were partly contemporaneous with and subsequent to the Hatvan, with no indications 
that upon their arrival they usurped the former culture45. The Otomani-Füzesabony is associated with increased 
socio-political and metallurgical complexity in the Carpathian Basin, as evidenced by tell sites, communal 
cemeteries, and advanced trade networks47. By this point the plow had been introduced48, with communities 
cultivating cereals like wheat and barley, vegetables and fruits, and likely fodder crops to feed cattle, pig, goat, 
sheep, and horses36,49.

Although there was profound cultural diversification during the Early Bronze and Middle Bronze Ages, by the 
Late Bronze Age cultures appear to homogenize over large geographic regions, much like that which occurred 
between the Late Neolithic and Early Copper Age, as manifested in the reduction of local cultural expression. 
The emergence of several cultures, including the Piliny/Kyjatice in the northern mountain range, and Gáva east 
of the Tisza, likely resulted from interregional contacts between groups occupying different ecological zones, 
resulting in increased trade and information flow50. This is further supported by the spread and increased cul-
tivation of millet51,52.

Late Bronze Age villages were seemingly abandoned, and new traditions and material culture appeared in 
the eastern parts of the Carpathian Basin at the beginning of the Iron Age (~ 900/800 BCE), namely on the 
central and southern part of the GHP, in the Northern Mountain Range, and in Transylvania. The Early Iron 
Age of the GHP is largely underrepresented in the archaeological record, perhaps because the cultures of this 
period, in particular the pre-Scythian (Mezőcsát), who mainly occupied the central and northern parts of the 
GHP53,54, were nomadic stockbreeders of gregarious animals (e.g., cattle, sheep, horse), unlike their more sed-
entary predecessors53,55. The Scythian (Vekerzug in the GHP) culture subsequently emerged and continued into 
the Middle Iron Age. Excavations of Vekerzug settlements indicate that agriculture and animal husbandry were 
practised along with highly developed iron metallurgy and ceramic manufacture53,56. Various other Middle Iron 
Age cultures occupied this region until the end of the fifth century BCE, when the Celts began their conquests and 
interrupted development of local cultures, not just in the Tisza region, but throughout the Carpathian Basin53,57. 
The associated cultures in the present dataset, and their associated dietary information, can be found in Table 1.

Previous archaeochemistry of the Great Hungarian Plain.  To assess links between diet and cultural 
evolution on the GHP, stable isotope and ancient DNA (aDNA) research has been conducted on samples from 
the Neolithic through Iron Age42,58–61. Previous carbon and nitrogen stable isotope analyses of human and faunal 
osteological samples from this region have focused primarily on Neolithic and Copper Age populations, report-
ing a transformation in subsistence strategies during the Late Neolithic and Copper Age towards increased 
consumption of animal protein compared to the previous subperiods58,62–65. Gamba et al.59 analysed the genomes 
of thirteen GHP individuals dating to between the Early Neolithic and Early Iron Age; the Bronze and Iron Age 
samples provided evidence for genomic turnover that contrasted the genetic continuity observed during the 
Neolithic and Copper Age. Allentoft et al.’s42 study of Eurasian genomes reported dynamic migrations during the 
Bronze Age, as well as the rise of the allele that confers the lactase gene, while de Barros Damgaard et al.66 found 
that Scythian groups were genetically comprised of Late Bronze Age herders, farmers, and hunter-gatherers. 
Comparing carbon and nitrogen isotopic ratios with aDNA results from GHP samples, Gamarra et al.58 found no 
associations between dietary, cultural, and genetic shifts from the Early Neolithic to Iron Age; however, Bronze 
and Iron Age individuals exhibited a diet higher in C4 plants, such as millet, which is a typical agricultural crop 
at this time in this region, compared to those from the Neolithic and Copper Age.

Genetic turnover, and technological evolution (e.g., changes in metallurgy during the Bronze Age: copper 
smelting to make Bronze, new casting techniques67,68, sheet metal manufacture69; and in the Iron Age: the ability 
to more locally produce iron, which affected political economies and the production of tools)70 were thus non-
linear, influencing the dietary strategies of numerous cultures that intermixed and overlapped through time. 
Owing to the complexities of these prehistoric cultural and demographic processes, the present study thus aims 
to improve our understanding of diachronic and culture-specific dietary signatures as revealed by the archaeol-
ogy and stable isotopes both between and within chronological periods and cultures.

Results
Archaeological and burial information are found in Supplementary Material S1, isotopic ratios, palaeodemo-
graphic information, and quality criteria are provided for each sample in Supplementary Material S2, and statisti-
cal tables are listed in Supplementary Material S3. Figure 2 illustrates the range of the stable carbon and nitrogen 
isotopic results of samples from this study coupled with data of Gamarra et al.58 and McCall73. The range of δ13C 
ratios for the entire dataset is − 21.2 to − 14.8‰ (mean = −18.3‰ ± 1.6‰ (1σ)); the δ15N value range for the entire 
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dataset is + 8.3 to 12.9‰ (mean =  + 10.5‰ ± 0.9‰ (1σ); Table 2). Overall, most samples indicate a terrestrial C3 
diet with nuanced statistical differences between certain groups, suggesting external influences that manifested 
in the diet. This is in keeping with what is known about food practices at the time, and is also congruent with 
previous isotopic analyses34,58.

Figure 2.   Scatterplots of human δ13C and δ15N ratios with mean δ13C and δ15N ratios (± 1 σ) by period (A) 
Bronze Age/BA (n = 50) and Iron Age/IA (n = 24) and subperiod (B) Early Bronze Age/EBA (n = 8), Middle 
Bronze Age/MBA (n = 18), Late Bronze Age/LBA (n = 22), and Early Iron Age/EIA (n = 24).

Table 2.   Summary of human δ13C and δ15N results of sample by period and subperiod with ‰ range, mean, 
and SD (± 1σ).

Period/subperiod n δ13C range (‰) Mean SD δ15N range (‰) Mean SD

Bronze Age 50  − 21.2 to − 14.8  − 18.7 1.5 8.9 to 12.9 10.7 0.9

Iron Age 24  − 20.5 to − 14.9  − 17.5 1.2 8.3 to 12.4 10.0 0.9

Early Bronze Age 8  − 20.3 to − 19.7  − 20.0 0.2 9.3 to 12.9 10.7 1.2

Middle Bronze Age 18  − 21.1 to − 16.7  − 19.4 1.3 8.9 to 12.2 10.7 0.9

Late Bronze Age 22  − 19.9 to − 14.8  − 17.7 1.3 9.8 to 12.9 10.9 0.8

Early Iron Age 24  − 20.5 to − 14.8  − 17.5 1.2 8.3 to 12.4 10.0 0.9
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Chronological variability.  The δ13C and δ15N results per period and subperiod are summarized in Table 2; 
tests of normality are found in Supplementary Material S3a, S3b, S3c, and S3d. There is an overall statistical 
difference for δ13C values between the Bronze and Iron Ages (Mann–Whitney U: U = 900.5; p = 0.001; Fig. 3A; 
Supplementary Material S3e); the Early Bronze, Middle Bronze, Late Bronze, and Early Iron Ages also exhibit 
significant statistical differences (Kruskal–Wallis: X2 = 31.122, p < 0.001; Fig. 4A; Supplementary Material S3f). 
As the Kruskal–Wallis test (p < 0.001) indicated differences between the four subperiods analyzed, pairwise 
Mann–Whitney tests were employed, revealing a significant difference between the Early Bronze and Middle 
Bronze Ages compared with the Late Bronze and Early Iron Ages (Supplementary Material S3g).

Similarly, for δ15N ratios there is an overall statistical difference between the Bronze and Iron Ages (independ-
ent samples t-test t73 = 3.369, p = 0.001; Fig. 3B; Supplementary Material S3h). The Tukey’s post hoc analysis (Sup-
plementary Material S3i), performed after a significant ANOVA (F(3,68) = 4.250, p = 0.008) result (Supplementary 
Material S3j), identified differences between the Late Bronze and Early Iron Ages, and differences among the 
Early, Middle, and Late Bronze Ages (Fig. 4B). Furthermore, there is a negative correlation (− 0.418, p < 0.001) 
across the four subperiods when comparing mean δ13C and δ15N ratios, seen when the increase in overall δ13C 
values correlates with a decrease in δ15N values.

Cultural variability.  The ranges for δ13C and δ15N ratios by culture are listed in Table 3; the δ13C and δ15N 
results are represented in Fig. 5; the tests of normality can be found in Supplementary Material S3k and S3l. For 
the inter-culture comparison (n = 67) there is an overall statistical difference between δ13C values (Kruskal–Wal-
lis: X2 = 25.159, p < 0.001) with the Füzesabony found to be significantly different from the Gáva and Scythian 
(Fig. 5A; Supplementary Material S3m). Similarly, the Proto-Nagyrév compared with the Gáva, Piliny/Kyjatice, 
pre-Scythian, and Scythian also demonstrate a notable difference in δ13C values (Pairwise Mann–Whitney, Sup-
plementary Material S3n). The comparison of δ15N ratios revealed an overall statistical difference between cul-

Figure 3.   Violin plot of human (A) δ13C and (B) δ15N ratios by period: Bronze Age (n = 50) and Iron Age 
(n = 24). Center black dot represents mean; center black line represents distribution.
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tures (one-way ANOVA: F(5,60) = 4.860, p = 0.001; Fig. 5B; Supplementary Material S3o). However, Scythian is 
the only culture with consistent differences for δ15N values compared with the Füzesabony, Proto-Nagyrév, and 
Piliny/Kyjatice cultures (Tukey’s test, Supplementary Material S3p).

Figure 4.   Violin plot of human (A) δ13C and (B) δ15N ratios by subperiod: Early Bronze Age (n = 8), Middle 
Bronze Age (n = 18), Late Bronze Age (n = 22), and Early Iron Age (n = 24). Center black dot represents mean; 
center black line represents distribution.

Table 3.   Summary of human δ13C and δ15N results by culture with ‰ range, mean, and SD (± 1σ).

Cultures Time period(s) n δ13C range (‰) Mean SD δ15N range (‰) Mean SD

Nyírség Early Bronze Age 1  − 20.2 N/A N/A 9.3 N/A N/A

Proto-Nagyrév Early Bronze Age 4  − 19.8 to − 19.7  − 19.8 0.1 10.6 to 12.9 11.7 0.9

Bell Beaker Early Bronze Age 2  − 20.3 to − 20.2  − 20.2 N/A 9.3 to 9.8 9.5 N/A

Hatvan Early Bronze Age 1  − 19.9 N/A N/A 10.7 N/A N/A

Hatvan or Füzesabony Early Bronze Age/Middle 
Bronze Age 6  − 21.0 to − 17.2  − 18.6 1.6 9.4 to 11.3 10.0 0.7

Füzesabony Middle Bronze Age 12  − 21.1 to − 16.7  − 19.4 1.3 8.9 to 12.2 10.7 0.9

Otomani/Ottomány Middle Bronze Age 1  − 20.1 N/A N/A 9.2 N/A N/A

Piliny or Piliny/Kyjatice Late Bronze Age 14  − 19.8 to − 16.1  − 18.0 1.0 10.1 to 12.8 11.1 0.6

pre-Gáva or Gáva Late Bronze Age, Early Iron Age 8  − 18.0 to − 14.8  − 16.7 1.2 9.8 to 12.9 10.7 1.0

Pre-Scythian (Mezőcsát) Early Iron Age 4  − 18.1 to − 14.8  − 16.8 1.3 10.4 to 11.0 10.8 0.2

Scythian (Vekerzug) Early Iron Age 19  − 20.5 to − 15.6  − 17.7 1.1 8.3 to 12.4 9.8 0.9
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Demographic variability.  Only adults of known sex were statistically assessed as too few individuals were 
identified for other demographic groups to be compared (i.e., age groups; Descriptive Information, Supplemen-
tary Material S3q; tests of normality, Supplementary Material S3r, S3s, S3t, and S3u). Between periods both 
females (n = 27) and males (n = 29) exhibit statistical differences for δ13C values (Mann–Whitney U: U = 42.5, 
p = 0.0198, Supplementary Material S3v; independent samples t-test t27 = −2.216, p = 0.035, Supplementary Mate-
rial S3w). There is no statistical difference between Bronze and Iron Age females for δ15N (independent samples 
t-test t25 = 1.889, p = 0.070, Supplementary Material S3x), nor for males between periods (independent samples 
t-test t27 = 1.867, p = 0.073, Supplementary Material S3y). However, nineteen individuals remain unsexed. This 
valuable demographic information, in addition to larger datasets per each demographic group, may alter δ13C 
value results between sexes, and also provide answers to questions concerning the age at which children were 
incorporated into a social stratification system (e.g., if they reflect more typical adult δ13C values74,75). No age- or 
sex-based tests were run by site, culture, or subperiod as there is significant incongruity in sample sizes between 
and among these categories, which would result in meaningless comparisons.

Discussion
Two key questions were posed in this research: 1) Is there evidence for nuanced dietary evolution from the Early 
Bronze Age to Early Iron Age, and 2) if so, what might this imply as concerns communication and trade in the 
later prehistoric GHP? Broadly speaking, the isotopic data presented here indicate a gradual shift in subsistence 
strategies from the Early Bronze to Early Iron Age, with evidence for subtle variation between cultures within 
epochs. In keeping with previous findings, near exclusive consumption of C3 plants remains characteristic of the 
Early Bronze Age58. Samples from both the Bronze and Iron Ages largely fall within δ13C values typical of C3 plant 
consumers, with a gradual increase in values over time. More specifically, the Late Bronze Age Piliny/Kyjatice 
samples are the first to exhibit as a whole less negative δ13C ratios, indicating a substantial shift from C3 plants or 

Figure 5.   Violin plot of human δ13C and δ15N ratios by cultures listed in roughly chronological order: PN 
(Proto-Nagyrév, n = 4), FZ (Füzesabony, n = 12), HFTZ (Hatvan or Füzesabony, n = 6), PLKY (Piliny or Piliny/
Kyjatice, n = 14), PG (pre-Gáva or Gáva, n = 8), PS (Pre-Scythian/Mezőcsát, n = 4), and SA (Scythian/Vekerzug, 
n = 19). Center black dot represents mean; center black line represents distribution.
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aquatic resources to C4 plants, concomitant with archaeological evidence for increased millet consumption51,52. 
Early Iron Age pre-Scythian (Mezőcsát) samples continue the Late Bronze Age trend by exhibiting enriched δ13C 
ratios, also in keeping with evidence for heavy reliance on millet at this time53–55.

The Bronze and Iron Age samples also exhibit less variable δ15N ratios than previous periods58. The slightly 
higher δ15N values of the Bronze Age compared to Iron Age samples indicate greater reliance on protein in the 
former period. Subtle changes between subperiods until the Early Iron Age point to a gradual shift from a more 
terrestrially omnivorous diet, potentially with a low trophic level aquatic resource influence. Although changes 
were detected for both males and females among the Bronze and Iron Age periods for δ15N ratios, these differ-
ences are similar to those seen in the broader pattern between periods (Supplementary Material S3h and S3j). 
As the pattern of change between the Bronze and Iron Ages is not limited to one sex, this shift in food consump-
tion can be interpreted as occurring among the entire population, as demonstrated by less negative δ13C values. 
These data thus provide evidence for nuanced dietary changes between the Early Bronze to Early Iron Ages. The 
implications for these findings are addressed below.

Middle Bronze Age millet consumption.  Although there is scattered evidence that broomcorn mil-
let was present in Europe (including present-day Hungary) from the Early Neolithic51,65,76, direct radiocarbon 
dating of millet grains from sites in Central and Eastern Europe disputes its initial economic importance in the 
human diet, or as a foddering source prior to the Bronze Age77. It is hypothesized instead to have been gradu-
ally incorporated into subsistence strategies from the Middle to Late Bronze Age52. While the AMS 14C results 
of Filipović et al.78 challenge this, our smaller dataset continues to indicate its slower incorporation, at least in 
the GHP. Moreover, though millet has been radiocarbon dated to ~ 1600–1400 BCE at Fajsz 18 (Hungary)79, it 
is otherwise virtually undocumented archaeologically until the Late Bronze Age in the GHP48,51. However, our 
data indicate the presence of millet, or a grain with comparable δ13C ratios, may have already begun in the Mid-
dle Bronze Age. Specifically, the Füzesabony yielded variable δ13C ratios that span both traditional terrestrial C3 
and C4 ranges (Table 3).

Our results are supported by other recent isotopic80, radiocarbon79, and archaeobotanical78 findings. For 
example, millet grains have been identified in Middle Bronze Age contexts in Moldova, from where it may have 
spread west up the Danube into the GHP along with other trade items78,79. In an isotopic analysis of the contem-
poraneous Trzciniec culture of Lesser Poland80, it was posited that broomcorn millet may have been introduced 
to the region through cultural interaction with, or migration of, the Otomani-Füzesabony (and/or Tumulus) 
culture, as suggested by the exchange of culturally diagnostic prestige objects (e.g., beads, pins, amber, maces, 
ceramics)47,81–83. Additionally, broomcorn millet was dated to the Middle Bronze Age at Maszkowice (Poland) 
where the authors note ceramic and metal artefacts are similar to those recovered in the south Tisza valley within 
the Otomani-Füzesabony tradition78.

A web of long-standing, long-distance trans-Carpathian exchange and communication networks appears 
to have often followed rivers and tributaries that connected the GHP north via the Vistula, Elbe, and Oder 
rivers towards the Baltic and North seas, east via the Tisza into Lesser Poland and Ukraine, and south via 
the Sava, Morava, and Vardar rivers towards the Aegean38. Northward dispersal of millet from the GHP may 
have progressed through such “communication corridors”, together with the exchange of cultural objects and 
information47. Several of our Füzesabony samples derive from the site of Mezőzombor-Községi temető, located 
near the central Tisza River at the confluence of the GHP and mountains60. Another sample, radiocarbon dated 
to 1740–1440 cal BCE, is from Nagyrozvágy-Papdomb, located on the Bodrog River; the site also has bronze 
and gold artefacts60. Located near rivers, these sites were ideally situated for trade. As noted earlier, increased 
socio-political and metallurgical complexity in the Carpathian Basin is evidenced by advanced trade networks 
and communal cemeteries associated with the Otomani-Füzesabony47. Furthermore, potential links between the 
Füzesabony and the introduction of millet, to contemporaneous Middle Bronze Age cultures of Lesser Poland 
and Ukraine, have been posited6 and are corroborated by our data, and archaeological evidence for complex 
communication and trade networks at this time. However, fully establishing whether millet was adopted or 
dispersed by the Füzesabony through trade (e.g. as part of a network package from other areas), or by migrants 
directly introducing this crop to the local GHP population, requires additional genetic and radiocarbon data 
along with strontium and oxygen isotope approaches. Moreover, data from other Middle Bronze Age GHP 
cultures (e.g., Tumulus, in prep.), are needed to address whether millet consumption gradually intensified from 
the Middle Bronze Age in the GHP, as suggested by our results, or if, as posited by Filipović et al.78, it became 
an important crop from the outset.

Lastly, it must be noted that the elevated δ13C values of this period may also, at least in part, result from 
consumption of livestock that had been grazed on C4 plants80. However, this is a less parsimonious explanation 
given previous cultures from the same region ought then to also exhibit elevated δ13C values if they or their 
livestock consumed wild C4-enriched plants84. Moreover, δ13C values of fauna (− 21.8 to − 19.4‰ with a mean 
value of − 20.6‰ ± 0.6‰ (1σ)), we previously obtained from the GHP, are consistent with terrestrial C3 environ-
ment ranges57,60.

Scythian subsistence economy.  In general, the Early Iron Age samples exhibit δ13C ratios suggestive of 
an increase in C4 plants, though remain proportionally more C3-based. However, the Early Iron Age Scythian 
(Vekerzug) samples specifically display greater variability, with the reappearance of more negative δ13C values, 
indicating some individuals consumed a mix of C3 and C4 cereals. They furthermore exhibit a reduction in δ15N 
values in comparison to Early Bronze Age populations and the pre-Scythian (Mezőcsát). This is potentially 
associated with increased sedentism in some Scythian groups, but greater reliance on pastoralism and thus C3 
plants, in others85,86. Additionally, these samples were consistently different to many other cultures for δ15N 
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values; their significantly depleted (mean = 9.8‰) ratios suggest either less animal protein or lower trophic level 
protein, perhaps due to a focus on agriculture and away from aquatic resources entirely. Broomcorn millet is 
consistently found in Scythian settlements, and is in general associated with pastoral nomads87. For example, at 
Rákoskeresztúr Újmajor and Ebes Zsong-völgy, barley and broomcorn millet predominate48,87,88. Lastly, the Vek-
erzug also notably differ from the Late Bronze Age Piliny/Kyjatice, the latter of which lived between mountains, 
a geographic restriction that may have resulted in dietary constraints.

In our dataset only one human sample (HUNG155) shows a δ13C signature (− 20.5‰) suggesting heavy 
reliance on C3 plants during the Early Iron Age. This individual also exhibits the most enriched δ15N value 
(12.5‰), significantly higher than other adult individuals, indicating another factor may have resulted in this 
enrichment. While inflammatory illness (e.g., tuberculosis) could account for this elevation, which in turn may 
be associated with the depleted δ13C values31, the identification of disease or infection was not possible due to 
poor skeletal preservation. Alternatively, this individual may have been engaged in pastoral nomadism, or con-
sumed secondary products from animals grazing C3 plants86,89. HUNG155 derives from the as yet unpublished 
Kesznyéten-Szérűskert cemetery, which yielded inhumed remains in a variety of burial positions, indicative 
perhaps, of both a diverse community and funerary rites90. Interestingly, HUNG155 is also a possible instance 
of corpse mutilation90, the significance of which may be further elucidated by the addition of strontium isotope 
values (in prep.).

Although the Scythians were historically portrayed as a nomadic-pastoralist warrior class, particularly in 
Central Asia91,92, data from Iron Age sites in Eurasia, East-Central Europe, and the GHP point to what appears 
to be a locally more complex scenario. Despite scarce evidence for Early Iron Age sites in the GHP, which cor-
roborates nomadic pastoralism, recent archaeobotanical88, pollen55, and now stable isotope findings, challenge the 
perception of Scythian societies as defined by pastoral nomadism. They instead depict a more complex scenario 
in which certain groups were nomadic herders, while others engaged in mixed farming or agro-pastoralism, 
potentially also occupying more settled communities53,56. For example, macrofossils of six-row barley and millet 
were recovered at Rákoskeresztúr-Újmajor in the Alföld88, while pollen records dating to the Hungarian Early 
Iron Age allude to both the intensification of pastoralism and the continued importance of a mixed farming 
regime, alongside highly developed iron metallurgy and ceramic manufacture53,55,56.

Diversification of local economies and adaptation to local environments has been posited based on archaeo-
botanical data from several Scythian sites in Central Asia93, which point to a similarly heterogenous subsistence 
economy as identified in our dataset. Archaeobotanical evidence for floodplain cereal cultivation of broomcorn 
millet and hulled barley has been recovered in Ukraine94, as has that of wheat, barley, millet, and rye in central 
Asia93 and Russia95. Recent isotopic evidence for cereal consumption in Scythian populations has also been 
reported for sites in Siberia and East Central Europe. For example, the urban Bel’sk (Ukraine) population was 
found to generally be composed of more sedentary agro-pastoralists who focused on millet cultivation85,86. It was 
also posited that millet and C3 cereals may have composed a significant proportion of the diets of two Scythian 
communities of the Minusinsk and Tuva basins (Siberia), but that consumption of animals foddered on C3 plants 
would isotopically mask their contribution84. It remains to be established whether this is associated with increased 
sedentism. Given genetic evidence66 that Scythian groups were comprised of Late Bronze Age herders, farm-
ers, and hunter-gatherers, further stable carbon, nitrogen and strontium isotopes of Early and Middle Iron Age 
Scythian populations from a dataset derived from diverse cemeteries, will also help to identify potentially heter-
ogenous lifeways within and between Iron Age cultures throughout the Carpathian Basin, and Eurasia at large.

Lastly, it must be noted that manuring affects the δ15N values of crops and their consumers96–98 with cattle 
manure altering ratios by + 2 to 8‰, and pig manure by + 15 to 20‰99. Given humans, who consume mainly 
herbivorous animal protein, have an expected δ15N range of + 8.5 to 12.5‰, those consuming manured cereals in 
a mixed plant- and animal-based diet should exhibit a concentrated range between + 6 and 9‰34,97,100. Accord-
ingly, our study shows that δ15N ratios progressively decrease from the Early Bronze to the Early Iron Age, with 
a stabilization of values that are likely due to manured crop consumption. The vast majority of our Scythian 
samples fall within the manured crop consumption range, suggesting a subsistence strategy of some animal 
protein intake combined with manured crops34,64,96,97,100. This indicates more uniform agricultural practices that 
resulted in more homogenized isotopic values.

Conclusions
The previously undetected nuanced differences we report here between the isotopic signatures of distinct cultures, 
and throughout the Early Bronze to Early Iron Ages, demonstrate that dietary evolution remains as complex and 
nonlinear as the cultural processes, and economic strategies with which it is entangled. The continued amalgama-
tion of research that includes both multi-isotopic and varied archaeological approaches will help shed further 
light on local and trans-Carpathian subsistence and trade. Lastly, due to the fact that we cover a wide range of 
cultures throughout a large time frame, some sample sizes are small. Future studies should build upon our results 
with larger datasets to provide an even higher resolution analysis of the detected trends.

Material and methods
Stable carbon and nitrogen isotope analyses were conducted on bone samples from 74 human individuals span-
ning the Early Bronze to the Early Iron Age from the GHP micro-region and the adjacent Northern Mountain 
Range (Supplementary Material S2). Biological sex of adult individuals was determined based on flexure of the 
mandibular ramus101, and dimorphic traits for the distal humerus102, and cranial and postcranial skeleton103. 
Adults were aged according to standard methods for the ilium104, pubic symphysis105, sternal aspect of ribs106,107, 
and according to obliteration of ectocranial sutures108. Subadult age was estimated based on the ossification of 
apophyseal and epiphyseal joints109,110, development of dentition111, and diaphyseal long bone measurements112,113. 
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Age grouping follows Martin and Saller114. When possible, material was assessed for palaeopathological data 
(Supplementary Material S2).

Collagen extraction was performed at the University College Dublin Conway Institute (Dublin, Ireland) 
following a modified version of the Longin method115, which can be found in detail elsewhere116–118. Each 
sample was weighed to ~ 0.6 mg and placed into a tin capsule. Several samples were processed twice to assure 
repeatability. All samples were within the acceptable range of two standard deviations of each other58. Samples 
were processed using a Thermo Finnigan DeltaPlus XL mass spectrometer. The accuracy and precision of the 
measurements, based on repeated measurements of two international laboratory standards USGS40 and USGS41, 
is ± 0.1‰ (1σ) for δ13C and ± 0.1‰ (1σ) for δ15N. All carbon stable isotopic results are expressed as a delta (δ) 
value relative to Vienna Pee Dee Belemnite (VPDB), and all nitrogen stable isotopic results as a delta (δ) value 
relative to ambient air (AIR).

Samples were assessed for contamination based on carbon and nitrogen content or weight (%). Acceptable 
%C ranges for modern mammalian bone collagen are between 15.3% and 47%, and for %N between 5.5% and 
17.3%; samples falling outside those ranges were deemed inappropriate for analysis119. Statistical analyses were 
performed to assess differences between time periods, demographic groups (i.e., age and sex), and cultures. 
Statistical analyses were not conducted on certain groups when the number of samples was too few to yield any 
meaningful analyses (n ≤ 4). Each group was checked for normality using a Shapiro–Wilk test, and equality of 
variance with Levene’s test, with a p < 0.050 as the statistical significance level. For pairwise comparisons among 
groups, t-tests (for normally distributed data), and Mann–Whitney U tests (for abnormally distributed data) were 
employed using p < 0.050 as the statistical significance level. When comparing multiple groups and to determine 
significant differences between them, one-way ANOVA and Kruskal–Wallis tests were employed for normally and 
abnormally distributed data, respectively. Post-hoc analyses were performed in cases of significance according 
to the normality of the data (Tukey’s, Mann–Whitney U, and Bonferroni tests). Statistical data were generated 
using R (v. 3.6.3120) using the ggplot2121 package to generate figures.

Ethics statement.  All necessary permits were obtained for the described study, which complied with all 
relevant regulations and ethical approval (Herman Ottó Múzeum, Miskolc; Dobó István Castle Museum, Eger; 
Hungarian National Museum, Budapest; Déri Museum, Debrecen; Budapest History Museum—Aquincum 
Museum and Archaeological Park, Budapest; Damjanich János Museum, Szolnok).

Data availability
All data generated or analysed during this study are included in this published article (and its supplementary 
information files).
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