19 research outputs found

    Intervención psicomotriz en un alumno con disgrafía: estudio de caso

    Get PDF
    Uno de los problemas que se presentan en la educación se relaciona con deficiencia en la lectoescritura producto de la disgrafía. Por ello el propósito de esta investigación fue el valorar el efecto de un programa psicomotor para atender la disgrafía en un alumno de telesecundaria de la ciudad de Chihuahua. El sujeto de investigación vivía en un medio sociocultural empobrecido, pocos hábitos de higiene, alimentación y disciplina. Se utilizó la escala de valoración disgrafía- flamenco al inicio y al final de la intervención. Se aplico un programa psicomotriz de 12 semanas de duración. Como resultados se presento mejora en siete de los ocho aspectos que psicomotrices valorados por la escala flamenco, así como un aumento en las actividades que puede realizar sin dificultad. En conclusión, la intervención mejoró los aspectos psicomotrices relacionados con la lectoescritura y brindó estrategias y técnicas prácticas para realizar la escritura de manera correcta. &nbsp

    Monitoring biological wastewater treatment processes: Recent advances in spectroscopy applications

    Get PDF
    Biological processes based on aerobic and anaerobic technologies have been continuously developed to wastewater treatment and are currently routinely employed to reduce the contaminants discharge levels in the environment. However, most methodologies commonly applied for monitoring key parameters are labor intensive, time-consuming and just provide a snapshot of the process. Thus, spectroscopy applications in biological processes are, nowadays, considered a rapid and effective alternative technology for real-time monitoring though still lacking implementation in full-scale plants. In this review, the application of spectroscopic techniques to aerobic and anaerobic systems is addressed focusing on UV--Vis, infrared, and fluorescence spectroscopy. Furthermore, chemometric techniques, valuable tools to extract the relevant data, are also referred. To that effect, a detailed analysis is performed for aerobic and anaerobic systems to summarize the findings that have been obtained since 2000. Future prospects for the application of spectroscopic techniques in biological wastewater treatment processes are further discussed.The authors thank the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, COMPETE 2020 (POCI-01-0145-FEDER-006684) and the project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte. The authors also acknowledge the financial support to Daniela P. Mesquita and Cristina Quintelas through the postdoctoral Grants (SFRH/BPD/82558/2011 and SFRH/BPD/101338/2014) provided by FCT - Portugal.info:eu-repo/semantics/publishedVersio

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF

    Cold molecular gas and PAH emission in the nuclear and circumnuclear regions of Seyfert galaxies

    No full text
    We investigate the relation between the detection of the 11.3  μm polycyclic aromatic hydrocarbon (PAH) feature in the nuclear (∼24-230 pc) regions of 22 nearby Seyfert galaxies and the properties of the cold molecular gas. For the former we use ground-based (0.3-0.6″ resolution) mid-infrared (mid-IR) spectroscopy. The cold molecular gas is traced by ALMA and NOEMA high (0.2-1.1″) angular resolution observations of the CO(2-1) transition. Galaxies with a nuclear detection of the 11.3 μm PAH feature contain more cold molecular gas (median 1.6 × 107 MO ) and have higher column densities (N(H2) = 2 × 1023 cm-2) over the regions sampled by the mid-IR slits than those without a detection. This suggests that molecular gas plays a role in shielding the PAH molecules in the harsh environments of Seyfert nuclei. Choosing the PAH molecule naphthalene as an illustration, we compute its half-life in the nuclear regions of our sample when exposed to 2.5 keV hard X-ray photons. We estimate shorter half-lives for naphthalene in nuclei without a 11.3 μm PAH detection than in those with a detection. The Spitzer/IRS PAH ratios on circumnuclear scales (∼4″ ∼ 0.25-1.3 kpc) are in between model predictions for neutral and partly ionized PAHs. However, Seyfert galaxies in our sample with the highest nuclear H2 column densities are not generally closer to the neutral PAH tracks. This is because in the majority of our sample galaxies, the CO(2-1) emission in the inner ∼4″ is not centrally peaked and in some galaxies traces circumnuclear sites of strong star formation activity. Spatially resolved observations with the MIRI medium-resolution spectrograph on the James Webb Space Telescope will be able to distinguish the effects of an active galactic nucleus (AGN) and star formation on the PAH emission in nearby AGN.With funding from the Spanish government through the "María de Maeztu Unit of Excellence" accreditation (MDM-2017-0737

    Cold molecular gas and PAH emission in the nuclear and circumnuclear regions of Seyfert galaxies

    Get PDF
    We investigate the relation between the detection of the 11.3 μm polycyclic aromatic hydrocarbon (PAH) feature in the nuclear (∼24−230 pc) regions of 22 nearby Seyfert galaxies and the properties of the cold molecular gas. For the former we use ground-based (0.3−0.6″ resolution) mid-infrared (mid-IR) spectroscopy. The cold molecular gas is traced by ALMA and NOEMA high (0.2−1.1″) angular resolution observations of the CO(2–1) transition. Galaxies with a nuclear detection of the 11.3 μm PAH feature contain more cold molecular gas (median 1.6 × 107 M⊙) and have higher column densities (N(H2) = 2 × 1023 cm−2) over the regions sampled by the mid-IR slits than those without a detection. This suggests that molecular gas plays a role in shielding the PAH molecules in the harsh environments of Seyfert nuclei. Choosing the PAH molecule naphthalene as an illustration, we compute its half-life in the nuclear regions of our sample when exposed to 2.5 keV hard X-ray photons. We estimate shorter half-lives for naphthalene in nuclei without a 11.3 μm PAH detection than in those with a detection. The Spitzer/IRS PAH ratios on circumnuclear scales (∼4″ ∼ 0.25−1.3 kpc) are in between model predictions for neutral and partly ionized PAHs. However, Seyfert galaxies in our sample with the highest nuclear H2 column densities are not generally closer to the neutral PAH tracks. This is because in the majority of our sample galaxies, the CO(2–1) emission in the inner ∼4″ is not centrally peaked and in some galaxies traces circumnuclear sites of strong star formation activity. Spatially resolved observations with the MIRI medium-resolution spectrograph on the James Webb Space Telescope will be able to distinguish the effects of an active galactic nucleus (AGN) and star formation on the PAH emission in nearby AGN
    corecore