858 research outputs found

    Longer growing seasons do not increase net carbon uptake in Northeastern Siberian tundra

    Get PDF
    With global warming, snowmelt is occurring earlier and growing seasons are becoming longer around the Arctic. It has been suggested that this would lead to more uptake of carbon due to a lengthening of the period in which plants photosynthesize. To investigate this suggestion, 8 consecutive years of eddy covariance measurements at a northeastern Siberian graminoid tundra site were investigated for patterns in net ecosystem exchange, gross primary production (GPP) and ecosystem respiration (Reco). While GPP showed no clear increase with longer growing seasons, it was significantly increased in warmer summers. Due to these warmer temperatures however, the increase in uptake was mostly offset by an increase in Reco. Therefore, overall variability in net carbon uptake was low, and no relationship with growing season length was found. Furthermore, the highest net uptake of carbon occurred with the shortest and the coldest growing season. Low uptake of carbon mostly occurred with longer or warmer growing seasons. We thus conclude that the net carbon uptake of this ecosystem is more likely to decrease rather than to increase under a warmer climate. These results contradict previous research that has showed more net carbon uptake with longer growing seasons. We hypothesize that this difference is due to site-specific differences, such as climate type and soil, and that changes in the carbon cycle with longer growing seasons will not be uniform around the Arcti

    Effects of habitat and livestock on nest productivity of the Asian houbara Chlamydotis macqueenii in Bukhara Province, Uzbekistan

    Get PDF
    To inform population support measures for the unsustainably hunted Asian houbara Chlamydotis macqueenii (IUCN Vulnerable) we examined potential habitat and land-use effects on nest productivity in the Kyzylkum Desert, Uzbekistan. We monitored 177 nests across different semi-arid shrub assemblages (clay-sand and salinity gradients) and a range of livestock densities (0–80 km-2). Nest success (mean 51.4%, 95% CI 42.4–60.4%) was similar across four years; predation caused 85% of those failures for which the cause was known, and only three nests were trampled by livestock. Nesting begins within a few weeks of arrival when food appears scarce, but later nests were more likely to fail owing to the emergence of a key predator, suggesting foraging conditions on wintering and passage sites may be important for nest productivity. Nest success was similar across three shrub assemblages and was unrelated to landscape rugosity, shrub frequency or livestock density, but was greater with taller mean shrub height (range 13–67 cm) within 50 m. Clutch size (mean = 3.2 eggs) and per-egg hatchability in successful nests (87.5%) did not differ with laying date, shrub assemblage or livestock density. We therefore found no evidence that livestock density reduced nest productivity across the range examined, while differing shrub assemblages appeared to offer similar habitat quality. Asian houbara appear well-adapted to a range of semi-desert habitats and tolerate moderate disturbance by pastoralism. No obvious in situ mitigation measures arise from these findings, leaving regulation and control as the key requirement to render hunting sustainable

    Achtergronddocument Midterm meting Monitor Effectindicatoren Agenda Vitaal Platteland

    Get PDF
    De Monitor AVP is een systeem waarin eenduidige gegevens worden opgenomen voor monitoring van effecten, resultaten en prestaties van de beleidsdoelstellingen opgenomen in de Agenda Vitaal Platteland (AVP) van het ministerie van Economische Zaken, Landbouw & Innovatie (EL&I). Dit document geeft de resultaten en achtergrondinformatie van de midterm meting en de methoden van de metingen van de afzonderlijke effectindicatoren van de Monitor AVP. De effectindicatoren zijn bedoeld om de maatschappelijke effecten van de Agenda Vitaal Platteland inzichtelijk te maken. Dit achtergronddocument is opgesteld om de continuĂŻteit voor toekomstige herhalingsmetingen te waarborgen

    The seasonal cycle of the greenhouse gas balance of a continental tundra site in the Indigirka lowlands, NE Siberia

    No full text
    International audienceCarbon dioxide and methane fluxes were measured at a tundra site near Chokurdakh, in the lowlands of the Indigirka river in north-east Siberia. This site is one of the few stations on Russian tundra and it is different from most other tundra flux stations in its continentality. A suite of methods was applied to determine the fluxes of NEE, GPP, Reco and methane, including eddy covariance, chambers and leaf cuvettes. Net carbon dioxide fluxes were unusually high, compared with other tundra sites, with NEE=?92 g C m?2 yr?1, which is composed of an Reco=+141 g C m?2 yr?1 and GPP=?232 g C m?2 yr?1. This large carbon dioxide sink may be explained by the continental climate, that is reflected in low winter soil temperatures (?14°C), reducing the respiration rates, and short, relatively warm summers, stimulating high photosynthesis rates. Interannual variability in GPP was dominated by the frequency of light limitation (Rg ?2), whereas Reco depends most directly on soil temperature and time in the growing season, which serves as a proxy of the combined effects of active layer depth, leaf area index, soil moisture and substrate availability. The methane flux, in units of global warming potential, was +28 g C-CO2e m?2 yr?1, so that the greenhouse gas balance was ?64 g C-CO2e m?2 yr?1. Methane fluxes depended only slightly on soil temperature and were highly sensitive to hydrological conditions and vegetation composition

    Mesoscale covariance of transport and CO2 fluxes: Evidence from observations and simulations using the WRF-VPRM coupled atmosphere-biosphere model

    Get PDF
    We developed a modeling system which combines a mesoscale meteorological model, the Weather Research and Forecasting (WRF) model, with a diagnostic biospheric model, the Vegetation Photosynthesis and Respiration (VPRM). The WRF-VPRM modeling system was designed to realistically simulate high-resolution atmospheric CO<sub>2</sub> concentration fields. In the system, WRF takes into account anthropogenic and biospheric CO<sub>2</sub> fluxes and realistic initial and boundary conditions for CO<sub>2</sub> from a global model. The system uses several “tagged” tracers for CO<sub>2</sub> fields from different sources. VPRM uses meteorological fields from WRF and high-resolution satellite indices to simulate biospheric CO<sub>2</sub> fluxes with realistic spatiotemporal patterns. Here we present results from the application of the model for interpretation of measurements made within the CarboEurope Regional Experiment Strategy (CERES). Simulated fields of meteorological variables and CO<sub>2</sub> were compared against ground-based and airborne observations. In particular, the characterization by aircraft measurements turned out to be crucial for the model evaluation. The comparison revealed that the model is able to capture the main observed features in the CO<sub>2</sub> distribution reasonably well. The simulations showed that daytime CO<sub>2</sub> measurements made at coastal stations can be strongly affected by land breeze and subsequent sea breeze transport of CO<sub>2</sub> respired from the vegetation during the previous night, which can lead to wrong estimates when such data are used in inverse studies. The results also show that WRF-VPRM is an effective modeling tool for addressing the near-field variability of CO<sub>2</sub> fluxes and concentrations for observing stations around the globe

    Measurements of evaporation from fallow Sahelian savannah at the start of the dry season

    Get PDF
    Micrometeorological measurements of evaporation were made for the first six weeks of the dry season at a fallow savannah site in the Sahel. The evaporation fell from typically 4.5 mm per day at the start of the dry season to 1.5 mm per day six weeks later. The surface conductance was modelled in terms of empirical functions of time of day, and the number of days since the final rain of the season. It was found that there was little variation in surface conductance within each day, with no significant correlation with solar radiation and only a weak correlation with humidity deficit. Daily values of the surface conductance necessary to estimate the actual evaporation, from the data provided by a standard climate station, were also derived

    Vee(n)houderij : rendabel mobiel melken in het Westelijk veenweidegebied

    Get PDF
    Over de problematiek van de melkveehouderij in het veengebied. Mobiele melkstal, mobiel melken in de regio Woerden - Bodegrave

    International perceptions of urban blue-green infrastructure: A comparison across four cities

    Get PDF
    © 2021 by the authors. Licensee MDPI, Basel, Switzerland. Blue-Green infrastructure (BGI) is recognised internationally as an approach for managing urban water challenges while enhancing society and the environment through the provision of multiple co-benefits. This research employed an online survey to investigate the perceptions of BGI held by professional stakeholders in four cities with established BGI programs: Newcastle (UK), Ningbo (China), Portland (Oregon USA), and Rotterdam (The Netherlands) (64 respondents). The results show that challenges associated with having too much water (e.g., pluvial and fluvial flood risk, water quality deterioration) are driving urban water management agendas. Perceptions of governance drivers for BGI implementation, BGI leaders, and strategies for improving BGI uptake, are markedly different in the four cities reflecting the varied local, regional and national responsibilities for BGI implementation. In addition to managing urban water, BGI is universally valued for its positive impact on residents’ quality of life; however, a transformative change in policy and practice towards truly multifunctional infrastructure is needed to optimise the delivery of multiple BGI benefits to address each city’s priorities and strategic objectives. Changes needed to improve BGI uptake, e.g., increasing the awareness of policy-makers to multifunctional BGI, has international relevance for other cities on their journeys to sustainable blue-green futures
    • 

    corecore