996 research outputs found

    Absolute measurement of the nitrogen fluorescence yield in air between 300 and 430 nm

    Get PDF
    The nitrogen fluorescence induced in air is used to detect ultra-high energy cosmic rays and to measure their energy. The precise knowledge of the absolute fluorescence yield is the key quantity to improve the accuracy on the cosmic ray energy. The total yield has been measured in dry air using a 90Sr source and a [300-430 nm] filter. The fluorescence yield in air is 4.23 ±\pm 0.20 photons per meter when normalized to 760 mmHg, 15 degrees C and with an electron energy of 0.85 MeV. This result is consistent with previous experiments made at various energies, but with an accuracy improved by a factor of about 3. For the first time, the absolute continuous spectrum of nitrogen excited by 90Sr electrons has also been measured with a spectrometer. Details of this experiment are given in one of the author's PhD thesis [32].Comment: accepted for publication in NIM

    A Preliminary Look at the Physics Reach of a Solar Neutrino TPC: Time-Independent Two Neutrino Oscillations

    Get PDF
    This paper will discuss the physics reach of a solar neutrino TPC containing many tons of He4 under high pressure. Particular attention is given to the LMA and SMA solutions, which are allowed by current data, and which are characterized by a lack of time-dependent phenomena (either summer-winter or day-night asymmetries). In this case, the physics of neutrino masses and mixing is all contained in the energy dependence of the electron neutrino survival probability, (or in its reciprocal, the electron neutrino disappearance probability).Comment: 19 pages, 12 figure

    UV Light Shower Simulator for Fluorescence and Cerenkov Radiation Studies

    Get PDF
    All experiments observing showers light use telescopes equipped with pixellised photodetectors. Monte-Carlo (MC) simulations of the apparatus operation in various situations (background light, shower energy, proximity of tracks...) are mandatory, but never enter into detector details like pulse shape, dead-time, or charge space effects which are finally responsible for the data quality. An apparatus where each pixel receives light from individual 370 nm UV LEDs through silica fibers is being built. The LEDs receive voltage through DACs, which get their input (which pixel, at what time, which amplitude) from a shower plus noise generator code. The typical time constant of a shower being one /mu/mus (300 m for light), the pulses are one /mu/mus wide. This is rather long compared to the intrinsic time constant (around 10 ns) of the light detectors, hence, these see "constant light" changing every /mu/mus. This is where important loading effects which are not included in MC code can be observed. The fibers illuminate the pixels through a diffuser, and each fiber illuminates only one pixel. The number of equipped pixels is such that it englobes a full shower (much less than the full focal surface). Finally, this equipment can be used also to calibrate the pixels

    MEMPHYS:A large scale water Cerenkov detector at Fr\'ejus

    Full text link
    A water \v{C}erenkov detector project, of megaton scale, to be installed in the Fr\'ejus underground site and dedicated to nucleon decay, neutrinos from supernovae, solar and atmospheric neutrinos, as well as neutrinos from a super-beam and/or a beta-beam coming from CERN, is presented and compared with competitor projects in Japan and in the USA. The performances of the European project are discussed, including the possibility to measure the mixing angle θ13\theta_{13} and the CP-violating phase δ\delta.Comment: 1+33 pages, 14 figures, Expression of Interest of MEMPHYS projec

    10,000 Standard Solar Models: a Monte Carlo Simulation

    Full text link
    We have evolved 10,000 solar models using 21 input parameters that are randomly drawn for each model from separate probability distributions for every parameter. We use the results of these models to determine the theoretical uncertainties in the predicted surface helium abundance, the profile of the sound speed versus radius, the profile of the density versus radius, the depth of the solar convective zone, the eight principal solar neutrino fluxes, and the fractions of nuclear reactions that occur in the CNO cycle or in the three branches of the p-p chains. We also determine the correlation coefficients of the neutrino fluxes for use in analysis of solar neutrino oscillations. Our calculations include the most accurate available input parameters, including radiative opacity, equation of state, and nuclear cross sections. We incorporate both the recently determined heavy element abundances recommended by Asplund, Grevesse & Sauval (2005) and the older (higher) heavy element abundances recommended by Grevesse & Sauval (1998). We present best-estimates of many characteristics of the standard solar model for both sets of recommended heavy element compositions.Comment: ** John N. Bahcall passed away on August 17, 2005. Manuscript has 60 pages including 10 figure

    Progress on a spherical TPC for low energy neutrino detection

    Full text link
    The new concept of the spherical TPC aims at relatively large target masses with low threshold and background, keeping an extremely simple and robust operation. Such a device would open the way to detect the neutrino-nucleus interaction, which, although a standard process, remains undetected due to the low energy of the neutrino-induced nuclear recoils. The progress in the development of the fist 1 m3^3 prototype at Saclay is presented. Other physics goals of such a device could include supernova detection, low energy neutrino oscillations and study of non-standard properties of the neutrino, among others.Comment: 3 pages, talk given at the 9th Workshop on Topics in Astroparticle and Underground Physics, Zaragoza, September 10-1

    The EUSO simulation and analysis framework

    Get PDF
    ESAF is the simulation and analysis software framework developed for the EUSO experiment. ESAF's scope is the whole process of data simulations and data-analysis, from the primary particle interaction in atmosphere to the reconstruction of the event. Based on the ROOT package and designed using Object Oriented technology, ESAF is organized in two main programs: the full montecarlo simulation and the reconstruction framework. The former includes all the relevant physical contributions, shower development in atmosphere, light transport to the detector pupil and detector response, while the latter comprises basic data cleaning, track direction, shower profile and energy reconstruction algorithms. Here we describe the software architecture and its main features

    Requirements and simulation study of the performance of EUSO as external payload on board the International Space Station

    Get PDF
    The "Extreme Universe Space Observatory - EUSO" has been conceived as the first Space mission devoted to the investigation of Ultra High Energy Cosmic Ray, using the Earth's atmosphere as a giant detector. The scientific objectives of the experiment are to observe the UHECR spectrum above the GZK energy, with an improvement of one order of magnitude in the statistics of collected events with respect to the existing experiments, in such a way to study the source distribution in a full sky survey, as well as to open the channel (set a confidence limit) on the neutrino astronomy in this energy range. Supposed to be accommodated as external payload on board the International Space Station, EUSO phase A study has been positively completed in July 2004. Nowadays, due to funding problems of the Space Agencies involved in the project, EUSO is currently on hold. Nevertheless, as result of an end-to-end simulation approach, we summarize here the expected scientific performance coming out from the phase A, as well as the expected improvements in the technical performance of the EUSO Instrument to be achieved during Phase B, in order to fulfil the scientific objectives posed as goal of the experiment

    Search for charginos in e+e- interactions at sqrt(s) = 189 GeV

    Full text link
    An update of the searches for charginos and gravitinos is presented, based on a data sample corresponding to the 158 pb^{-1} recorded by the DELPHI detector in 1998, at a centre-of-mass energy of 189 GeV. No evidence for a signal was found. The lower mass limits are 4-5 GeV/c^2 higher than those obtained at a centre-of-mass energy of 183 GeV. The (\mu,M_2) MSSM domain excluded by combining the chargino searches with neutralino searches at the Z resonance implies a limit on the mass of the lightest neutralino which, for a heavy sneutrino, is constrained to be above 31.0 GeV/c^2 for tan(beta) \geq 1.Comment: 22 pages, 8 figure
    corecore