64 research outputs found

    Novel role of a triglyceride-synthesizing enzyme:DGAT1 at the crossroad between triglyceride and cholesterol metabolism

    Get PDF
    AbstractAcyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) is a key enzyme in triacylglycerol (TG) biosynthesis. Here we show that genetic deficiency and pharmacological inhibition of DGAT1 in mice alters cholesterol metabolism. Cholesterol absorption, as assessed by acute cholesterol uptake, was significantly decreased in the small intestine and liver upon DGAT1 deficiency/inhibition. Ablation of DGAT1 in the intestine (I-DGAT1−/−) alone is sufficient to cause these effects. Consequences of I-DGAT1 deficiency phenocopy findings in whole-body DGAT1−/− and DGAT1 inhibitor-treated mice. We show that deficiency/inhibition of DGAT1 affects cholesterol metabolism via reduced chylomicron size and increased trans-intestinal cholesterol excretion. These effects are independent of cholesterol uptake at the apical surface of enterocytes but mediated through altered dietary fatty acid metabolism. Our findings provide insight into a novel role of DGAT1 and identify a pathway by which intestinal DGAT1 deficiency affects whole-body cholesterol homeostasis in mice. Targeting intestinal DGAT1 may represent a novel approach for treating hypercholesterolemia

    Impaired Intestinal Farnesoid X Receptor Signaling in Cystic Fibrosis Mice

    Get PDF
    Background & Aims: The bile acid (BA)-activated farnesoid X receptor (FXR) controls hepatic BA synthesis and cell proliferation via the intestinal hormone fibroblast growth factor 19. Because cystic fibrosis (CF) is associated with intestinal dysbiosis, anomalous BA handling, and biliary cirrhosis, we investigated FXR signaling in CF. Methods: Intestinal and hepatic expression of FXR target genes and inflammation markers was assessed in Cftr null mice and controls. Localization of the apical sodium-dependent BA transporter was assessed, and BAs in gastrointestinal tissues were analyzed. The CF microbiota was characterized and FXR signaling was investigated in intestinal tissue and organoids. Results: Ileal murine fibroblast growth factor 19 ortholog (Fgf15) expression was strongly reduced in CF mice, compared with controls. Luminal BA levels and localization of apical sodium-dependent BA transporter was not affected, and BAs induced Fgf15 up to normal levels in CF ileum, ex vivo, and CF organoids. CF mice showed a dysbiosis that was associated with a marked up-regulation of genes involved in host–microbe interactions, including those involved in mucin glycosylation, antimicrobial defense, and Toll-like receptor signaling. Antibiotic treatment reversed the up-regulation of inflammatory markers and restored intestinal FXR signaling in CF mice. Conversely, FXR-dependent gene induction in ileal tissue and organoids was repressed by bacterial lipopolysaccharide and proinflammatory cytokines, respectively. Loss of intestinal FXR activity was associated with a markedly blunted hepatic trophic response to oral BA supplementation, and with impaired repression of Cyp7a1, the gene encoding the rate-limiting enzyme in BA synthesis. Conclusions: In CF mice, the gut microbiota represses intestinal FXR activity, and, consequently, FXR-dependent hepatic cell proliferation and feedback control of BA synthesis

    Skin sensitization in silico protocol

    Get PDF
    The assessment of skin sensitization has evolved over the past few years to include in vitro assessments of key events along the adverse outcome pathway and opportunistically capitalize on the strengths of in silico methods to support a weight of evidence assessment without conducting a test in animals. While in silico methods vary greatly in their purpose and format; there is a need to standardize the underlying principles on which such models are developed and to make transparent the implications for the uncertainty in the overall assessment. In this contribution, the relationship of skin sensitization relevant effects, mechanisms, and endpoints are built into a hazard assessment framework. Based on the relevance of the mechanisms and effects as well as the strengths and limitations of the experimental systems used to identify them, rules and principles are defined for deriving skin sensitization in silico assessments. Further, the assignments of reliability and confidence scores that reflect the overall strength of the assessment are discussed. This skin sensitization protocol supports the implementation and acceptance of in silico approaches for the prediction of skin sensitization

    Bicuspid aortic valve as the mark of connective tissue disorders

    Get PDF
    Relevance. The bicuspid aortic valve (BAV) can be combined with genetic developmental syndromes, but the pediatric aspects of the problem have not been adequately studied. Goal. Determine the frequency of BAV from the data of the ultrasound examination rooms (ultrasound) and characterize the clinical and echocardiographic aspects of the bicuspid aortic valve. Material and methods. 19 patients with BAV (17 children and 2 adults) were examined. To evaluate the possible long-term consequences of BAV, 45 adults were examined: men 25 (mean age 61.72 ± 1.42 years), women 20 (mean age 64.9 ± 1.46 years). Results. The frequency of BAV according to the ultrasound examination rooms is 1 case per 20 000-23 500 studies. BAV was combined with genetic syndromes of connective tissue dysplasia (hypermobility syndromes of joints, Marfan, FreemanSheldon, etc.), registered in twins. The average value of the eccentricity index of the BAV leaflets was 3.5, the standard deviation was 1.1, the standard error was 0.274. In adult patients with BAV, calcification of the valves was observed, which was not detected in the control group (p = 0.006). Conclusion. BAV can be both an accidental finding, and be combined with another pathology. BAV is more often found in people with hereditary developmental syndromes. The presence of BAV requires the exclusion of genetic developmental syndromes. Despite the comparative rarity of BAV in the general population, a remote prognosis may be serious, which requires the pediatrician to organize interdisciplinary interaction

    Probing the link between pancratistatin and mitochondrial apoptosis through changes in the membrane dynamics on the nanoscale

    Get PDF
    Pancratistatin (PST) is a natural antiviral alkaloid that has demonstrated specificity toward cancerous cells and explicitly targets the mitochondria. PST initiates apoptosis while leaving healthy, noncancerous cells unscathed. However, the manner by which PST induces apoptosis remains elusive and impedes the advancement of PST as a natural anticancer therapeutic agent. Herein, we use neutron spin–echo (NSE) spectroscopy, molecular dynamics (MD) simulations, and supporting small angle scattering techniques to study PST’s effect on membrane dynamics using biologically representative model membranes. Our data suggests that PST stiffens the inner mitochondrial membrane (IMM) by being preferentially associated with cardiolipin, which would lead to the relocation and release of cytochrome c. Second, PST has an ordering effect on the lipids and disrupts their distribution within the IMM, which would interfere with the maintenance and functionality of the active forms of proteins in the electron transport chain. These previously unreported findings implicate PST’s effect on mitochondrial apoptosis
    • …
    corecore