96 research outputs found

    The Burst-Like Behavior of Aseismic Slip on a Rough Fault: The Creeping Section of the Haiyuan Fault, China

    Get PDF
    Recent observations suggesting the influence of creep on earthquakes nucleation and arrest are strong incentives to investigate the physical mechanisms controlling how active faults slip. We focus here on deriving generic characteristics of shallow creep along the Haiyuan fault, a major strike‐slip fault in China, by investigating the relationship between fault slip and geometry. We use optical images and time series of Synthetic Aperture Radar data to map the surface fault trace and the spatiotemporal distribution of surface slip along the creeping section of the Haiyuan fault. The fault trace roughness shows a power‐law behavior similar to that of the aseismic slip distribution, with a 0.8 roughness exponent, typical of a self‐affine regime. One possible interpretation is that fault geometry controls to some extent the distribution of aseismic slip, as it has been shown previously for coseismic slip along active faults. Creep is characterized by local fluctuations in rates that we define as creep bursts. The potency of creep bursts follows a power‐law behavior similar to the Gutenberg–Richter earthquake distribution, whereas the distribution of bursts velocity is non‐Gaussian, suggesting an avalanche‐like behavior of these slip events. Such similarities with earthquakes and lab experiments lead us to interpret the rich dynamics of creep bursts observed along the Haiyuan fault as resulting from long‐range elastic interactions within the heterogeneous Earth’s crust

    New Radar Interferometric Time Series Analysis Toolbox Released

    Get PDF
    Interferometric synthetic aperture radar (InSAR) has become an important geodetic tool for measuring deformation of Earth’s surface due to various geophysical phenomena, including slip on earthquake faults, subsurface migration of magma, slow‐moving landslides, movement of shallow crustal fluids (e.g., water and oil), and glacier flow. Airborne and spaceborne synthetic aperture radar (SAR) instruments transmit microwaves toward Earth’s surface and detect the returning reflected waves. The phase of the returned wave depends on the distance between the satellite and the surface, but it is also altered by atmospheric and other effects. InSAR provides measurements of surface deformation by combining amplitude and phase information from two SAR images of the same location taken at different times to create an interferogram. Several existing open‐source analysis tools [Rosen et al., 2004; Rosen et al., 2011; Kampes et al., 2003 ; Sandwell et al., 2011] enable scientists to exploit observations from radar satellites acquired at two different epochs to produce a surface displacement map

    Back-arc strain in subduction zones: Statistical observations versus numerical modeling

    No full text
    International audience1] Recent statistical analysis by Lallemand et al. (2008) of subduction zone parameters revealed that the back-arc deformation mode depends on the combination between the subducting (nu(sub)) and upper (nu(up)) plate velocities. No significant strain is recorded in the arc area if plate kinematics verifies nu(up) = 0.5 vsub - 2.3 (cm/a) in the HS3 reference frame. Arc spreading ( shortening) occurs if nu(up) is greater ( lower) than the preceding relationship. We test this statistical law with numerical models of subduction, by applying constant plate velocities far away from the subduction zone. The subducting lithosphere is free to deform at all depths. We quantify the force applied on the two converging plates to sustain constant surface velocities. The simulated rheology combined viscous (non-Newtonian) and brittle behaviors, and depends on water content. The influence of subduction rate vs is first studied for a fixed upper plate. After 950 km of convergence ( steady state slab pull), the transition from extensional to compressive stresses in the upper plate occurs for vs similar to 1.4 cm/a. The effect of upper plate velocity is then tested at constant subduction rate. Upper plate retreat ( advance) with respect to the trench increases extension ( compression) in the arc lithosphere and increases ( decreases) the subducting plate dip. Our modeling confirms the statistical kinematic relationship between vsub and nu(up) that describes the transition from extensional to compressive stresses in the arc lithosphere, even if the modeled law is shifted toward higher rates of upper plate retreat, using our set of physical parameters ( e. g., 100 km thick subducting oceanic plate) and short- term simulations. Our results make valid the choice of the HS3 reference frame for assessing plate velocity influence on arc tectonic regime. The subduction model suggests that friction along the interplate contact and the mantle Stokes reaction could be the two main forces competing against slab pull for upper mantle subductions. Besides, our simulations show that the arc deformation mode is strongly time dependent

    Constant slip‐rate on the Doruneh strike‐slip fault, Iran, averaged over Late Pleistocene, Holocene, and decadal timescales

    Get PDF
    Varying estimates of both present‐day strain accumulation and long‐term slip‐rate on the Doruneh left‐lateral strike‐slip fault, NE Iran, have led to suggestions that it exhibits large along‐strike and/or temporal changes in activity. In this paper, we make and compare estimates of slip‐rate measured using both geodesy and geomorphology, and spanning time periods ranging from decadal to 100 ka. To image the present‐day accumulation of strain we process seven years (2003‐2010) of data from six ENVISAT tracks covering the fault, with interferograms produced for 400 km‐long strips of data in order to image the long‐wavelength signals associated with interseismic strain accumulation across the locked fault. Our analysis shows that less than 4 mm/yr – and likely only 1‐3 mm/yr ‐ of slip accumulates across the fault. Using high‐resolution optical satellite imagery we make reconstructions of displacement across six alluvial fans whose surfaces cross the fault, in four separate river catchments. We determine the ages of these fans using infra‐red‐stimulated luminescence dating combined with U‐series dating of pedogenic carbonates. The six fans vary in age from ∌10‐100 kyr, and a regression line fitted to four of these yields a slip rate of 2.5 ± 0.3 mm/yr. We conclude that within the uncertainty of our measurements the slip‐rate has remained constant over the last ∌100 ka and is representative of the strain accumulation at the present‐day. The slip‐rate that we measure is consistent with the E‐W left‐lateral Doruneh fault accommodating N‐S right‐lateral faulting by 'bookshelf' faulting, with clockwise rotation about a vertical axis

    First recorded eruption of Nabro volcano, Eritrea, 2011

    Get PDF
    We present a synthesis of diverse observations of the first recorded eruption of Nabro volcano, Eritrea, which began on 12 June 2011. While no monitoring of the volcano was in effect at the time, it has been possible to reconstruct the nature and evolution of the eruption through analysis of re- gional seismological and infrasound data and satellite remote sensing data, supplemented by petrological analysis of erupted products and brief field surveys. The event is notable for the comparative rarity of recorded historical eruptions in the region and of caldera systems in general, for the prodi- gious quantity of SO2 emitted into the atmosphere and the significant human impacts that ensued notwithstanding the low population density of the Afar region. It is also relevant in understanding the broader magmatic and tectonic signifi- cance of the volcanic massif of which Nabro forms a part and which strikes obliquely to the principal rifting directions in the Red Sea and northern Afar. The whole-rock compositions of Editorial responsibility: G. Giordano the erupted lavas and tephra range from trachybasaltic to trachybasaltic andesite, and crystal-hosted melt inclusions contain up to 3,000 ppm of sulphur by weight. The eruption was preceded by significant seismicity, detected by regional networks of sensors and accompanied by sustained tremor. Substantial infrasound was recorded at distances of hundreds to thousands of kilometres from the vent, beginning at the onset of the eruption and continuing for weeks. Analysis of ground deformation suggests the eruption was fed by a shal- low, NW–SE-trending dike, which is consistent with field and satellite observations of vent distributions. Despite lack of prior planning and preparedness for volcanic events in the country, rapid coordination of the emergency response miti- gated the human costs of the eruption

    EPSL Thermal evolution of the oceanic lithosphere: an alternative view Abstract

    No full text
    The most common model used for representing the evolution with age of the oceanic lithosphere is the ‘plate model’ where the temperature is set at a fixed depth, called the base of the plate. This ‘base of the plate ’ has no physical meaning but this model provides a mathematical substitute for a system where small-scale convection occurs through instabilities growing at the base of the cooling lithosphere and becomes effective only below old ocean. Another possible view is that convection provides heat at the base of the lithosphere whatever the age of the overlying plate. This last process can be modeled by a Constant Heat flow Applied on the Bottom Lithospheric ISothetm (CHABLIS model). A good fit to the observables (bathymetry and geoid as function of age, and old age heat-flow) can be obtained both for plate and CHABLIS models in spite of an experimentally determined thermal expansion coefficient much larger than assumed in previous plate models. These models have important consequences for several geodynamic processes. The plate, at an age of 100 Ma is only 80 km thick for both models: melting above a hot-snot can then occur in the garnet-spine1 transition field without much plate thinning. In the plate model the subsidence is stopped at an age of about 80 Ma while, according to the CHABLIS model, several hundred meters of subsidence are expected after 100 Ma. Thus the two models predict quite a different long-term pattern of subsidence in the sedimentary basins. Finally, in the CHABLIS model, the global cooling of the mantle coming from cold material eroded by secondary convection at the base of the plates is considerably larger than in plate models: it amounts to 40%, the remaining 60 % being due to the subduction process
    • 

    corecore