8 research outputs found

    Discovering cancer vulnerabilities using high-throughput micro-RNA screening

    Get PDF
    © 2017 The Author(s). Micro-RNAs (miRNAs) are potent regulators of gene expression and cellular phenotype. Each miRNA has the potential to target hundreds of transcripts within the cell thus controlling fundamental cellular processes such as survival and proliferation. Here, we exploit this important feature of miRNA networks to discover vulnerabilities in cancer phenotype, and map miRNA-target relationships across different cancer types. More specifically, we report the results of a functional genomics screen of 1280 miRNA mimics and inhibitors in eight cancer cell lines, and its presentation in a sophisticated interactive data portal. This resource represents the most comprehensive survey of miRNA function in oncology, incorporating breast cancer, prostate cancer and neuroblastoma. A user-friendly web portal couples this experimental data with multiple tools for miRNA target prediction, pathway enrichment analysis and visualization. In addition, the database integrates publicly available gene expression and perturbation data enabling tailored and context-specific analysis of miRNA function in a particular disease. As a proof-of-principle, we use the database and its innovative features to uncover novel determinants of the neuroblastoma malignant phenotype

    A moving target: structure and disorder in pursuit of Myc inhibitors

    Get PDF
    The Myc proteins comprise a family of ubiquitous regulators of gene expression implicated in over half of all human cancers. They interact with a large number of other proteins, such as transcription factors, chromatin-modifying enzymes and kinases. Remarkably few of these interactions have been characterized structurally. This is at least in part due to the intrinsically disordered nature of Myc proteins, which adopt a defined conformation only in the presence of binding partners. Due to this behaviour, crystallographic studies on Myc proteins have been limited to short fragments in complex with other proteins. Most recently, we determined the crystal structure of Aurora-A kinase domain bound to a 28 amino acid fragment of the N-Myc transactivation domain. The structure reveals an a-helical segment within N-Myc capped by two tryptophan residues that recognize the surface of Aurora-A. The kinase domain acts as a molecular scaffold, independently of its catalytic activity, upon which this region of N-Myc becomes ordered. The binding site for N-Myc on Aurora-A is disrupted by certain ATP-competitive inhibitors, such as MLN8237 (alisertib) and CD532 and explains how these kinase inhibitors are able to disrupt the protein-protein interaction to effect Myc destabilization. Structural studies on this and other Myc complexes will lead to the design of protein-protein interaction inhibitors as chemical tools to dissect the complex pathways of Myc regulation and function, which may be developed into Myc inhibitors for the treatment of cancer

    Proteogenomic analysis of Inhibitor of Differentiation 4 (ID4) in basal-like breast cancer

    Get PDF
    Funder: National Health and Medical Research Council; doi: http://dx.doi.org/10.13039/501100000925Abstract: Background: Basal-like breast cancer (BLBC) is a poorly characterised, heterogeneous disease. Patients are diagnosed with aggressive, high-grade tumours and often relapse with chemotherapy resistance. Detailed understanding of the molecular underpinnings of this disease is essential to the development of personalised therapeutic strategies. Inhibitor of differentiation 4 (ID4) is a helix-loop-helix transcriptional regulator required for mammary gland development. ID4 is overexpressed in a subset of BLBC patients, associating with a stem-like poor prognosis phenotype, and is necessary for the growth of cell line models of BLBC through unknown mechanisms. Methods: Here, we have defined unique molecular insights into the function of ID4 in BLBC and the related disease high-grade serous ovarian cancer (HGSOC), by combining RIME proteomic analysis, ChIP-seq mapping of genomic binding sites and RNA-seq. Results: These studies reveal novel interactions with DNA damage response proteins, in particular, mediator of DNA damage checkpoint protein 1 (MDC1). Through MDC1, ID4 interacts with other DNA repair proteins (γH2AX and BRCA1) at fragile chromatin sites. ID4 does not affect transcription at these sites, instead binding to chromatin following DNA damage. Analysis of clinical samples demonstrates that ID4 is amplified and overexpressed at a higher frequency in BRCA1-mutant BLBC compared with sporadic BLBC, providing genetic evidence for an interaction between ID4 and DNA damage repair deficiency. Conclusions: These data link the interactions of ID4 with MDC1 to DNA damage repair in the aetiology of BLBC and HGSOC

    Body Size Distribution of the Dinosaurs

    Get PDF
    The distribution of species body size is critically important for determining resource use within a group or clade. It is widely known that non-avian dinosaurs were the largest creatures to roam the Earth. There is, however, little understanding of how maximum species body size was distributed among the dinosaurs. Do they share a similar distribution to modern day vertebrate groups in spite of their large size, or did they exhibit fundamentally different distributions due to unique evolutionary pressures and adaptations? Here, we address this question by comparing the distribution of maximum species body size for dinosaurs to an extensive set of extant and extinct vertebrate groups. We also examine the body size distribution of dinosaurs by various sub-groups, time periods and formations. We find that dinosaurs exhibit a strong skew towards larger species, in direct contrast to modern day vertebrates. This pattern is not solely an artefact of bias in the fossil record, as demonstrated by contrasting distributions in two major extinct groups and supports the hypothesis that dinosaurs exhibited a fundamentally different life history strategy to other terrestrial vertebrates. A disparity in the size distribution of the herbivorous Ornithischia and Sauropodomorpha and the largely carnivorous Theropoda suggests that this pattern may have been a product of a divergence in evolutionary strategies: herbivorous dinosaurs rapidly evolved large size to escape predation by carnivores and maximise digestive efficiency; carnivores had sufficient resources among juvenile dinosaurs and non-dinosaurian prey to achieve optimal success at smaller body size. © 2012 O'Gorman, Hone

    Correction: Body Size Distribution of the Dinosaurs

    No full text

    MicroRNAs as potential therapeutics to enhance chemosensitivity in advanced prostate cancer

    Get PDF
    Docetaxel and cabazitaxel are taxane chemotherapy treatments for metastatic castration-resistant prostate cancer (CRPC). However, therapeutic resistance remains a major issue. MicroRNAs are short non-coding RNAs that can silence multiple genes, regulating several signalling pathways simultaneously. Therefore, synthetic microRNAs may have therapeutic potential in CRPC by regulating genes involved in taxane response and minimise compensatory mechanisms that cause taxane resistance. To identify microRNAs that can improve the efficacy of taxanes in CRPC, we performed a genome-wide screen of 1280 microRNAs in the CRPC cell lines PC3 and DU145 in combination with docetaxel or cabazitaxel treatment. Mimics of miR-217 and miR-181b-5p enhanced apoptosis significantly in PC3 cells in the presence of these taxanes. These mimics downregulated at least a thousand different transcripts, which were enriched for genes with cell proliferation and focal adhesion functions. Individual knockdown of a selection of 46 genes representing these transcripts resulted in toxic or taxane sensitisation effects, indicating that these genes may be mediating the effects of the microRNA mimics. A range of these genes are expressed in CRPC metastases, suggesting that these microRNA mimics may be functional in CRPC. With further development, these microRNA mimics may have therapeutic potential to improve taxane response in CRPC patients

    Targeting the Id1-Kif11 Axis in Triple-Negative Breast Cancer Using Combination Therapy

    No full text
    The basic helix-loop-helix (bHLH) transcription factors inhibitor of differentiation 1 (Id1) and inhibitor of differentiation 3 (Id3) (referred to as Id) have an important role in maintaining the cancer stem cell (CSC) phenotype in the triple-negative breast cancer (TNBC) subtype. In this study, we aimed to understand the molecular mechanism underlying Id control of CSC phenotype and exploit it for therapeutic purposes. We used two different TNBC tumor models marked by either Id depletion or Id1 expression in order to identify Id targets using a combinatorial analysis of RNA sequencing and microarray data. Phenotypically, Id protein depletion leads to cell cycle arrest in the G0/G1 phase, which we demonstrate is reversible. In order to understand the molecular underpinning of Id proteins on the cell cycle phenotype, we carried out a large-scale small interfering RNA (siRNA) screen of 61 putative targets identified by using genomic analysis of two Id TNBC tumor models. Kinesin Family Member 11 (Kif11) and Aurora Kinase A (Aurka), which are critical cell cycle regulators, were further validated as Id targets. Interestingly, unlike in Id depletion conditions, Kif11 and Aurka knockdown leads to a G2/M arrest, suggesting a novel Id cell cycle mechanism, which we will explore in further studies. Therapeutic targeting of Kif11 to block the Id1–Kif11 axis was carried out using small molecular inhibitor ispinesib. We finally leveraged our findings to target the Id/Kif11 pathway using the small molecule inhibitor ispinesib in the Id+ CSC results combined with chemotherapy for better response in TNBC subtypes. This work opens up exciting new possibilities of targeting Id targets such as Kif11 in the TNBC subtype, which is currently refractory to chemotherapy. Targeting the Id1–Kif11 molecular pathway in the Id1+ CSCs in combination with chemotherapy and small molecular inhibitor results in more effective debulking of TNBC
    corecore