122 research outputs found

    BIBLIOGRAPHY ON RADIATION EFFECTS ON NOBLE METALS

    Full text link

    EFFECTS OF WATER VAPOR AND OTHER GASES ON URANIUM, THORIUM, PLUTONIUM, AND CARBIDES. A BIBLIOGRAPHY

    Full text link

    VORTEX TUBES, A BIBLIOGRAPHY

    Full text link

    TNT equivalency analysis of specific impulse distribution from close-in detonations

    Get PDF
    Detonation of a high explosive close to a structural component results in a blast load that is highly localized and nonuninform in nature. Prediction of structural response and damage due to such loads requires a detailed understanding of both the magnitude and distribution of the load, which in turn are a function of the properties and dimensions of the structure, the standoff from the charge to the structure, and the composition of the explosive. It is common to express an explosive as an equivalent mass of TNT to facilitate the use of existing and well-established semi-empirical methods. This requires calculation of a TNT equivalency factor (EF), that is, the mass ratio between the equivalent mass of TNT and the explosive mass in question, such that a chosen blast parameter will be the same for the same set of input conditions aside from explosive type. In this paper, we derive EF for three common explosives: C4, COMP-B, and ANFO, using an equivalent upper bound kinetic energy approach. A series of numerical simulations are performed, and the resultant magnitudes and distributions of specific impulse are used to derive the theoretical upper bound kinetic energy that would be imparted to a flexible target. Based on the equivalent mass of TNT of each explosive, which is required to impart the same kinetic energy for a given target size and standoff distance as of TNT, the EF is calculated. It is shown that in the near-field, the EFs are non-constant and are dependent on both standoff and target size. The results in the current study are presented in a scaled form and can be used for any practical combination of charge mass, distance from the charge to the target, target size, thickness, and density

    Observations from Preliminary Experiments on Spatial and Temporal Pressure Measurements from Near-Field Free Air Explosions

    Get PDF
    It is self-evident that a crucial step in analysing the performance of protective structures is to be able to accurately quantify the blast load arising from a high explosive detonation. For structures located near to the source of a high explosive detonation, the resulting pressure is extremely high in magnitude and highly non-uniform over the face of the target. There exists very little direct measurement of blast parameters in the nearfield, mainly attributed to the lack of instrumentation sufficiently robust to survive extreme loading events yet sensitive enough to capture salient features of the blast. Instead literature guidance is informed largely by early numerical analyses and parametric studies. Furthermore, the lack of an accurate, reliable data set has prevented subsequent numerical analyses from being validated against experimental trials. This paper presents an experimental methodology that has been developed in part to enable such experimental data to be gathered. The experimental apparatus comprises an array of Hopkinson pressure bars, fitted through holes in a target, with the loaded faces of the bars flush with the target face. Thus, the bars are exposed to the normally or obliquely reflected shocks from the impingement of the blast wave with the target. Pressure-time recordings are presented along with associated Arbitary-Langrangian-Eulerian modelling using the LS-DYNA explicit numerical code. Experimental results are corrected for the effects of dispersion of the propagating waves in the pressure bars, enabling accurate characterisation of the peak pressures and impulses from these loadings. The combined results are used to make comments on the mechanism of the pressure load for very near-field blast events

    Four aspects of self-image close to death at home

    Get PDF
    Living close to death means an inevitable confrontation with one's own existential limitation. In this article, we argue that everyday life close to death embodies an identity work in progress. We used a narrative approach and a holistic-content reading to analyze 12 interviews conducted with three persons close to death. By illuminating the unique stories and identifying patterns among the participants’ narratives, we found four themes exemplifying important aspects of the identity work related to everyday life close to death. Two of the themes, named “Inside and outside of me” and “Searching for togetherness,” represented the core of the self-image and were framed by the other themes, “My place in space” and “My death and my time.” Our findings elucidate the way the individual stories moved between the past, the present, and the future. This study challenges the idea that everyday life close to impending death primarily means limitations. The findings show that the search for meaning, new knowledge, and community can form a part of a conscious and ongoing identity work close to death

    Two nations underground: building schools to survive nuclear war and desegregation in the 1960s

    Get PDF
    In the 1960s federal agencies in the United States encouraged the building of protected schools designed to survive a nuclear attack. A number of designs, including underground schools, were constructed. In order to promote the building of protected schools, the US government produced a number of propaganda films for school boards and governors. In addition to promoting post-nuclear survival, these films considered that protected schools were beneficial in terms of progressive and child-centred education and sometimes racial assimilation. This paper considers the extent to which securitisation and progressive education found a common purpose at this time and considers the implications of this for race equality. The data is based upon rare, archival film from the US National Archives in College Park, Maryland on school protection during the Cold War. These films, intended for wider public consumption were intended as promotional shorts for schools boards and other decision makers to show the advantages of adding fallout protection to school design. The method involved an archival search to scope the range of films produced at this time. Each film was viewed multiple times at the archive to transcribe text and image descriptions. This dual data was then used to form a narrative account of the argument structure of the films to identify the ways in which interest convergences and divergences around ‘race’ are deployed. The discussion uses conceptions of ‘flexible whiteness’ to examine how securitisation, a discourse identified with white hegemony, can additionally contain conceptions of race equality and progressivism

    Validity of Resting Energy Expenditure Predictive Equations before and after an Energy-Restricted Diet Intervention in Obese Women

    Get PDF
    Background We investigated the validity of REE predictive equations before and after 12-week energy-restricted diet intervention in Spanish obese (30 kg/m2>BMI<40 kg/m2) women. Methods We measured REE (indirect calorimetry), body weight, height, and fat mass (FM) and fat free mass (FFM, dual X-ray absorptiometry) in 86 obese Caucasian premenopausal women aged 36.7±7.2 y, before and after (n = 78 women) the intervention. We investigated the accuracy of ten REE predictive equations using weight, height, age, FFM and FM. Results At baseline, the most accurate equation was the Mifflin et al. (Am J Clin Nutr 1990; 51: 241–247) when using weight (bias:−0.2%, P = 0.982), 74% of accurate predictions. This level of accuracy was not reached after the diet intervention (24% accurate prediction). After the intervention, the lowest bias was found with the Owen et al. (Am J Clin Nutr 1986; 44: 1–19) equation when using weight (bias:−1.7%, P = 0.044), 81% accurate prediction, yet it provided 53% accurate predictions at baseline. Conclusions There is a wide variation in the accuracy of REE predictive equations before and after weight loss in non-morbid obese women. The results acquire especial relevance in the context of the challenging weight regain phenomenon for the overweight/obese population.The present study was supported by the University of the Basque Country (UPV 05/80), Social Foundation of the Caja Vital- Kutxa and by the Department of Health of the Government of the Basque Country (2008/111062), and by the Spanish Ministry of Science and Innovation (RYC-2010-05957)
    corecore