3,516 research outputs found

    The Myth of the Molecular Ring

    Full text link
    We investigate the structure of the Milky Way by determining how features in a spatial map correspond to CO features in a velocity map. We examine structures including logarithmic spiral arms, a ring and a bar. We explore the available parameter space, including the pitch angle of the spiral arms, radius of a ring, and rotation curve. We show that surprisingly, a spiral arm provides a better fit to the observed molecular ring than a true ring feature. This is because both a spiral arm, and the observed feature known as the molecular ring, are curved in velocity longitude space. We find that much of the CO emission in the velocity longitude map can be fitted by a nearly symmetric 2 armed spiral pattern. One of the arms corresponds to the molecular ring, whilst the opposite arm naturally reproduces the Perseus arm. Multiple arms also contribute to further emission in the vicinity of the molecular ring and match other observed spiral arms. Whether the Galactic structure consists primarily of two, or several spiral arms, the presence of 2 symmetric logarithmic spirals, which begin in the vicinity of the ends of the bar, suggest a spiral density wave associated with the bar.Comment: 7 pages, 2 figures, accepted by MNRA

    The Exciting Lives of Giant Molecular Clouds

    Full text link
    We present a detailed study of the evolution of GMCs in a galactic disc simulation. We follow individual GMCs (defined in our simulations by a total column density criterion), including their level of star formation, from their formation to dispersal. We find the evolution of GMCs is highly complex. GMCs often form from a combination of smaller clouds and ambient ISM, and similarly disperse by splitting into a number of smaller clouds and ambient ISM. However some clouds emerge as the result of the disruption of a more massive GMC, rather than from the assembly of smaller clouds. Likewise in some cases, clouds accrete onto more massive clouds rather than disperse. Because of the difficulty of determining a precursor or successor of a given GMC, determining GMC histories and lifetimes is highly non-trivial. Using a definition relating to the continuous evolution of a cloud, we obtain lifetimes typically of 4-25 Myr for >10^5 M⊙_{\odot} GMCs, over which time the star formation efficiency is about 1 %. We also relate the lifetime of GMCs to their crossing time. We find that the crossing time is a reasonable measure of the actual lifetime of the cloud, although there is considerable scatter. The scatter is found to be unavoidable because of the complex and varied shapes and dynamics of the clouds. We study cloud dispersal in detail and find both stellar feedback and shear contribute to cloud disruption. We also demonstrate that GMCs do not behave as ridge clouds, rather massive spiral arm GMCs evolve into smaller clouds in inter-arm spurs.Comment: 15 pages, 16 figures, accepted for publication in MNRA

    The evolution of Giant Molecular Filaments

    Get PDF
    In recent years there has been a growing interest in studying giant molecular filaments (GMFs), which are extremely elongated (> 100pc in length) giant molecular clouds (GMCs). They are often seen as inter-arm features in external spiral galaxies, but have been tentatively associated with spiral arms when viewed in the Milky Way. In this paper, we study the time evolution of GMFs in a high-resolution section of a spiral galaxy simulation, and their link with spiral arm GMCs and star formation, over a period of 11Myrs. The GMFs generally survive the inter-arm passage, although they are subject to a number of processes (e.g. star formation, stellar feedback and differential rotation) which can break the giant filamentary structure into smaller sections. The GMFs are not gravitationally bound clouds as a whole, but are, to some extent, confined by external pressure. Once they reach the spiral arms, the GMFs tend to evolve into more substructured spiral arm GMCs, suggesting that GMFs may be precursors to arm GMCs. Here, they become incorporated into the more complex and almost continuum molecular medium that makes up the gaseous spiral arm. Instead of retaining a clear filamentary shape, their shapes are distorted both by their climb up the spiral potential and their interaction with the gas within the spiral arm. The GMFs do tend to become aligned with the spiral arms just before they enter them (when they reach the minimum of the spiral potential), which could account for the observations of GMFs in the Milky Way.Comment: 15 pages, 11 figures, MNRAS accepte

    Clumpy and fractal shocks, and the generation of a velocity dispersion in molecular clouds

    Get PDF
    We present an alternative explanation for the nature of turbulence in molecular clouds. Often associated with classical models of turbulence, we instead interpret the observed gas dynamics as random motions, induced when clumpy gas is subject to a shock. From simulations of shocks, we show that a supersonic velocity dispersion occurs in the shocked gas provided the initial distribution of gas is sufficiently non-uniform. We investigate the velocity size-scale relation σ∝rα\sigma \propto r^{\alpha} for simulations of clumpy and fractal gas, and show that clumpy shocks can produce realistic velocity size-scale relations with mean α∌0.5\alpha \thicksim 0.5. For a fractal distribution, with a fractal dimension of 2.2 similar to what is observed in the ISM, we find σ∝r0.4\sigma \propto r^{0.4}. The form of the velocity size-scale relation can be understood as due to mass loading, i.e. the post-shock velocity of the gas is determined by the amount of mass encountered as the gas enters the shock. We support this hypothesis with analytical calculations of the velocity dispersion relation for different initial distributions. A prediction of this model is that the line-of sight velocity dispersion should depend on the angle at which the shocked gas is viewed.Comment: 11 pages, 17 figures, accepted for publication in MNRA

    Testing hydrodynamics schemes in galaxy disc simulations

    Get PDF
    We examine how three fundamentally different numerical hydrodynamics codes follow the evolution of an isothermal galactic disc with an external spiral potential. We compare an adaptive mesh refinement code (RAMSES), a smoothed particle hydrodynamics code (SPHNG), and a volume-discretised meshless code (GIZMO). Using standard refinement criteria, we find that RAMSES produces a disc that is less vertically concentrated and does not reach such high densities as the SPHNG or gizmo runs. The gas surface density in the spiral arms increases at a lower rate for the RAMSES simulations compared to the other codes. There is also a greater degree of substructure in the SPHNG and GIZMOruns and secondary spiral arms are more pronounced. By resolving the Jeans’ length with a greater number of grid cells we achieve more similar results to the Lagrangian codes used in this study. Other alterations to the refinement scheme (adding extra levels of refinement and refining based on local density gradients) are less successful in reducing the disparity between RAMSES and SPHNG/GIZMO. Although more similar, SPHNG displays different density distributions and vertical mass profiles to all modes of gizmo (including the smoothed particle hydrodynamics version). This suggests differences also arise which are not intrinsic to the particular method but rather due to its implementation. The discrepancies between codes (in particular, the densities reached in the spiral arms) could potentially result in differences in the locations and timescales for gravitational collapse, and therefore impact star formation activity in more complex galaxy disc simulations

    Giant Molecular clouds: what are they made from, and how do they get there?

    Full text link
    We analyse the results of four simulations of isolated galaxies: two with a rigid spiral potential of fixed pattern speed, but with different degrees of star-formation induced feedback, one with an axisymmetric galactic potential and one with a `live' self-gravitating stellar component. Since we use a Lagrangian method we are able to select gas that lies within giant molecular clouds (GMCs) at a particular timeframe, and to then study the properties of this gas at earlier and later times. We find that gas which forms GMCs is not typical of the interstellar medium at least 50 Myr before the clouds form and reaches mean densities within an order of magnitude of mean cloud densities by around 10 Myr before. The gas in GMCs takes at least 50 Myr to return to typical ISM gas after dispersal by stellar feedback, and in some cases the gas is never fully recycled. We also present a study of the two-dimensional, vertically-averaged velocity fields within the ISM. We show that the velocity fields corresponding to the shortest timescales (that is, those timescales closest to the immediate formation and dissipation of the clouds) can be readily understood in terms of the various cloud formation and dissipation mechanisms. Properties of the flow patterns can be used to distinguish the processes which drive converging flows (e.g.\ spiral shocks, supernovae) and thus molecular cloud formation, and we note that such properties may be detectable with future observations of nearby galaxies.Comment: 13 pages, 8 figures, accepted for publication in MNRA

    Simulating the impact of the Smith Cloud

    Get PDF
    We investigate the future evolution of the Smith Cloud by performing hydrodynamical simulations of the cloud impact onto the gaseous Milky Way Galactic disk. We assume a local origin for the cloud and thus do not include a dark matter component to stabilize it. Our main focus is the cloud's influence on the local and global star formation rate (SFR) of the Galaxy and whether or not it leads to an observable event in the far future. Our model assumes two extremes for the mass of the Smith Cloud, an upper mass limit of 107^7 M⊙_{\odot} and a lower mass limit of 106^6 M⊙_{\odot}, compared to the observational value of a few 106^6 M⊙_{\odot}. In addition, we also make the conservative assumption that the entirety of the cloud mass of the extended Smith Cloud is concentrated within the tip of the cloud. We find that the impact of the low-mass cloud produces no noticeable change in neither the global SFR nor the local SFR at the cloud impact site within the galactic disk. For the high-mass cloud we find a short-term (roughly 5 Myr) increase of the global SFR of up to 1 M⊙_{\odot} yr−1^{-1}, which nearly doubles the normal Milky Way SFR. This highly localized starburst should be observable.Comment: 14 pages, 5 figure

    Radiative Hydrodynamic Simulations of HD209458b: Temporal Variability

    Full text link
    We present a new approach for simulating the atmospheric dynamics of the close-in giant planet HD209458b that allows for the decoupling of radiative and thermal energies, direct stellar heating of the interior, and the solution of the full 3D Navier Stokes equations. Simulations reveal two distinct temperature inversions (increasing temperature with decreasing pressure) at the sub-stellar point due to the combined effects of opacity and dynamical flow structure and exhibit instabilities leading to changing velocities and temperatures on the nightside for a range of viscosities. Imposed on the quasi-static background, temperature variations of up to 15% are seen near the terminators and the location of the coldest spot is seen to vary by more than 20 degrees, occasionally appearing west of the anti-solar point. Our new approach introduces four major improvements to our previous methods including simultaneously solving both the thermal energy and radiative equations in both the optical and infrared, incorporating updated opacities, including a more accurate treatment of stellar energy deposition that incorporates the opacity relevant for higher energy stellar photons, and the addition of explicit turbulent viscosity.Comment: Accepted for publication in Ap

    Atmospheric Dynamics of Short-period Extra Solar Gas Giant Planets I: Dependence of Night-Side Temperature on Opacity

    Full text link
    More than two dozen short-period Jupiter-mass gas giant planets have been discovered around nearby solar-type stars in recent years, several of which undergo transits, making them ideal for the detection and characterization of their atmospheres. Here we adopt a three-dimensional radiative hydrodynamical numerical scheme to simulate atmospheric circulation on close-in gas giant planets. In contrast to the conventional GCM and shallow water algorithms, this method does not assume quasi hydrostatic equilibrium and it approximates radiation transfer from optically thin to thick regions with flux-limited diffusion. In the first paper of this series, we consider synchronously-spinning gas giants. We show that a full three-dimensional treatment, coupled with rotationally modified flows and an accurate treatment of radiation, yields a clear temperature transition at the terminator. Based on a series of numerical simulations with varying opacities, we show that the night-side temperature is a strong indicator of the opacity of the planetary atmosphere. Planetary atmospheres that maintain large, interstellar opacities will exhibit large day-night temperature differences, while planets with reduced atmospheric opacities due to extensive grain growth and sedimentation will exhibit much more uniform temperatures throughout their photosphere's. In addition to numerical results, we present a four-zone analytic approximation to explain this dependence.Comment: 35 Pages, 13 Figure

    Buying used goods (1993)

    Get PDF
    "Reviewed October 1993.
    • 

    corecore