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ABSTRACT

We examine how three fundamentally different numerical hydrodynamics codes
follow the evolution of an isothermal galactic disc with an external spiral potential.
We compare an adaptive mesh refinement code (ramses), a smoothed particle hy-
drodynamics code (sphNG), and a volume-discretised meshless code (gizmo). Using
standard refinement criteria, we find that ramses produces a disc that is less vertically
concentrated and does not reach such high densities as the sphNG or gizmo runs. The
gas surface density in the spiral arms increases at a lower rate for the ramses simula-
tions compared to the other codes. There is also a greater degree of substructure in the
sphNG and gizmo runs and secondary spiral arms are more pronounced. By resolving
the Jeans’ length with a greater number of grid cells we achieve more similar results to
the Lagrangian codes used in this study. Other alterations to the refinement scheme
(adding extra levels of refinement and refining based on local density gradients) are less
successful in reducing the disparity between ramses and sphNG/gizmo. Although
more similar, sphNG displays different density distributions and vertical mass profiles
to all modes of gizmo (including the smoothed particle hydrodynamics version). This
suggests differences also arise which are not intrinsic to the particular method but
rather due to its implementation. The discrepancies between codes (in particular, the
densities reached in the spiral arms) could potentially result in differences in the lo-
cations and timescales for gravitational collapse, and therefore impact star formation
activity in more complex galaxy disc simulations.

Key words: methods: numerical – hydrodynamics – galaxies: evolution – galaxies:
structure

1 INTRODUCTION

It is well known that galactic dynamics play an important
role in the formation of star-forming regions (e.g. Dobbs
et al. 2014), with the gravitational potential of the spiral
structure competing with hydrodynamical forces, large-scale
differential rotation, and energetic feedback. The interplay
of these processes is particularly difficult to study observa-
tionally and the hydrodynamical complexity means that a
full understanding is analytically intractable. For these rea-
sons, numerical simulations are a dominant tool for further-
ing our understanding of gas dynamics in a galactic context.
However the results can be quite different depending on the
particular methodology for solving these equations. Hydro-
dynamics codes (which by now are extremely complex) may

⋆ E-mail: c.gareth.few@gmail.com

give conflicting results due to the respective strengths and
weaknesses of the different implementations.

Code comparisons seek to quantify how different
methodologies reproduce fluid flow and where weaknesses
lie. These comparisons tend to concentrate on idealised test
conditions (Agertz et al. 2007; Tasker et al. 2008; Price
2008; Hopkins 2015) which are easy to compare objectively,
or on reproducing turbulent behaviour (Klessen, Heitsch &
Mac Low 2000; Kitsionas et al. 2009; Price & Federrath
2010; Kritsuk et al. 2011), while others consider cosmologi-
cal galaxy formation (Frenk et al. 1999; Pearce et al. 1999;
O’Shea et al. 2005; Torrey et al. 2012; Kereš et al. 2012;
Scannapieco et al. 2012). To date, almost no work (except-
ing Hopkins (2015)) has compared the behaviour of isolated
galaxy discs with different hydrodynamical codes

In this work we compare the Adaptive Mesh Refinement
(AMR) code ramses (Teyssier 2002), the Smoothed Parti-
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cle Hydrodynamics (SPH) code sphNG (Benz 1990), and
the Lagrangian, mesh-less finite volume code gizmo (Hop-
kins 2015) in the context of a galactic disc with a rotating
non-axisymmetric potential. Our purpose is to determine
whether spiral galaxy and molecular cloud simulations with
these codes are in concordance, and if not, what measures
may be taken to achieve consistent results. This paper is or-
ganised as follows. In the remainder of §1 we briefly review
existing code comparisons and relevant simulation methods.
In §2 we describe the codes employed in this work, our ini-
tial conditions and the set of parameters we use. We analyse
the growth of the spiral arms for the different codes and as
a function of resolution in §3. We conclude with a discussion
of our results in §4.

1.1 Hydrodynamical Methods

1.1.1 Smoothed Particle Hydrodynamics

SPH methods use the movement and concentration of par-
ticles to provide automatic refinement in dense areas. This
means that low density regions are more poorly resolved and
the resolution of phenomena in areas where density gradi-
ents are steep are not guaranteed. Despite these issues, over-
densities are almost always our regions of interest, and SPH
methods are extremely useful.

We will not describe here the details of all SPH codes
employed in this field but simply note works using them
(e.g. Dobbs, Bonnell & Pringle 2006; Dobbs et al. 2008;
Saitoh et al. 2008; Robertson & Kravtsov 2008; Hopkins
et al. 2012; Williamson & Thacker 2012; Grand, Kawata &
Cropper 2012; Dobbs & Pringle 2013; Mata-Chávez, Gómez
& Puerari 2014; Williamson et al. 2014) and that typically
resolution is given by particles numbers of ∼106–107 and
mass resolutions of order 103–104 M⊙. Other than deliberate
choices of cooling, star formation, and feedback etc, the key
differences between these codes include how the smoothing
length is determined, whether the SPH equations are used in
pressure-energy or density-entropy form, and how artificial
viscosity and conductivity are treated.

1.1.2 Grid-based Hydrodynamics

The majority of other work in simulating isolated galactic
discs employ some form of grid method. The simplest of
these is a fixed cartesian grid which may fit around a single
spiral arm in the fashion of Kim & Ostriker (2002, 2006) or
around the entire disc (e.g. Wada & Norman 2007; Wada
2008; Khoperskov et al. 2013) for which spatial resolution
depends upon the size of disc that is simulated but can fea-
sibly reach ∼7 pc. Of the works mentioned here only Khop-
erskov et al. (2013) simulates a disc with size comparable to
the MW.

To reach greater resolution, grid simulations often use
adaptive mesh refinement (Berger & Oliger 1984; Berger &
Colella 1989), whereby grids are subdivided to some appro-
priate resolution based on local hydrodynamical properties.
The key strength of this approach is that it gives the user
almost unlimited flexibility and control over which parts of
the simulation volume are to be resolved and that large scale
effects can be incorporated into simulations where very fine
spatial phenomena are to be studied. It should be noted

though that this means that different works can employ dif-
ferent refinement schemes and parameters which influence
the simulations.

One approach requires that the Jeans’ length be re-
solved by a minimum number of cells at each level. The
minimum number is often set to the limit derived in Tru-
elove et al. (1997), i.e. 4 grid cells per Jeans’ length. This
refinement criterion is most important when considering self-
gravitating gas and the Truelove et al. (1997) limit is in-
tended to prevent numerical fragmentation, although resolv-
ing the Jeans’ length is also necessary to capture physical
fragmentation of the gas. The Jeans’ length refinement cri-
terion is employed in Tasker & Tan (2009); Renaud et al.
(2013); Fujimoto et al. (2014); Petit et al. (2015); Tasker,
Wadsley & Pudritz (2015). Of particular note here is the
work of Petit et al. (2015) in which the number of grid cells
per Jeans’ length is increased from the typical 4 to a more
rigorous value of 32.

Another approach, sometimes termed ‘quasi-Lagran-
gian’, resolves cells based on the local density such that the
mass enclosed in a grid cell is roughly the same on each re-
finement level (e.g. Bournaud et al. 2010; Fujimoto et al.
2014; Agertz, Romeo & Grisdale 2015). One strength of this
technique is that the mass per grid cell may also include
stellar or dark matter mass which are usually gravitation-
ally dominant. In this way, a stellar substructure can be well
resolved for the gas phase even before the gas density in-
creases. Note that even for isothermal runs in the absense of
non-gaseous mass (such as presented in this work), a fixed
mass threshold for refinement is not equivalent to a fixed
Jeans’ length threshold.

The typical finest resolution for AMR runs ranges from
9 pc to 1.5 pc (considered sufficient to resolve the forma-
tion of the largest giant molecular clouds) with Renaud
et al. (2013) achieving 0.05 pc resolution, albeit only for
the last 50 Myr of the 780 Myr run. However, while oft
quoted as “the resolution”, stating the minimum grid size is
only slightly more informative than is the minimum smooth-
ing length of an SPH simulation unless the phenomenon in
which one is interested is entirely comprised of grid cells
on that ultimate refinement level. Other refinement criteria
are available, see Khokhlov (1998), but those described here
cover the approaches currently employed in the simulation
of galactic discs.

In addition to the criteria for refinement, and limits on
the permitted levels, refinement usually also takes place in
a cubic buffer around refined cells, this smooths the tran-
sition between different levels and prevents a noisy mesh
structure from forming: this buffer can vary in size and only
ever increase resolution, refining cells that are not ordinarily
qualified. Finally, some codes require de-refinement criteria
for the grid, but as ramses is not among them, we do not
discuss this here.

1.1.3 Hybrid Hydrodynamical Methods

For a long time the two dominant hydrodynamics schemes
were SPH and grid (often AMR) methods, recently how-
ever new techniques have been developed. One new method,
called Godunov-SPH or GSPH, involves a reformulation of
SPH to introduce a Riemann solver that determines the force
acting between each particle pair (Inutsuka 2002; Cha &
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Whitworth 2003). This does in principle grant the ability
to resolve shocks in the absense of artificial viscosity and
therefore avoid any side effets that occur as a consequence.

‘Moving-mesh’ techniques are a different approach to
hydrodynamical codes which hybridise Lagrangian and Eu-
lerian schemes. This technique is used in arepo (Springel
2010). It evolves a finite-volume unstructured Voronoi mesh
that moves with the fluid flow. This approach retains the
ability of Eulerian codes to resolve shocks by employing a
Riemann solver across each boundary between cells. Movin-
mesh schemes are Galilean invariant and less noisy and less
diffusive than SPH codes. arepo is applied to the problem
of an isolated galactic disc in Pakmor & Springel (2013) and
Smith et al. (2014).

Another method that hybridises SPH and grid codes
is the so-called ‘meshless’ scheme that is detailed in Lan-
son & Vila (2008a,b); Gaburov & Nitadori (2011); Hopkins
(2015). In these codes, the particle ensemble is topologi-
cally similar to moving-mesh frameworks but for the lack
of a sharply defined boundary between the resolution ele-
ment domains. These codes are closer in their execution to
SPH codes than moving-mesh techniques are but similarly
employ a Riemann solver across the interfaces between res-
olution elements, enabling shock capturing. In this work we
consider one of these meshless codes, gizmo (Hopkins 2015),
in our comparisons.

1.2 Code Comparisons

The differences between SPH and grid-based codes have
been much discussed and we now briefly review the most
relevant code comparison literature.

The first main type of comparison uses idealised tests
that are simple setups for which analytical solutions exist
such as the Sod shock tube or Sedov blast wave or instability
tests (e.g. Kelvin-Helmholtz). Agertz et al. (2007) compare
AMR and SPH using a similar number of resolution elements
in the areas of interest. They found that all grid codes tested
produced similar results for blob tests, Kelvin-Helmholtz
and Rayleigh-Taylor instability tests and likewise, the SPH
codes produced similar results as each other. Agertz et al.
(2007) find that contact discontinuities and blob disintegra-
tion are less well reproduced by SPH codes, however Price
(2008) counters that the inclusion of an artificial thermal
conductivity term in SPH formulations reproduces these dis-
continuities. Likewise, the introduction of thermal diffusion
improves instability resolution in SPH codes (Wadsley, Veer-
avalli & Couchman 2008). The inclusion of artificial con-
ductivity/thermal diffusion is not relevant to this particular
study because we are considering isothermal flows.

Idealised tests are presented in Tasker et al. (2008) with
the conclusion that SPH codes excel at resolving the be-
haviour of dense objects while AMR codes are the preferred
choice for voids (because they retain resolution in low den-
sity regions) and shocks because of the ability to force res-
olution in areas of steep density contrast. This work also
found that SPH codes can struggle to resolve fluid insta-
bilities, while praising grid codes for being able to model
multiphase fluids due to the sharp contrasts that can exist
across grid boundaries. Despite these differences, the conclu-
sion is that concordance between grid and particle codes is

reached when there is one particle per grid cell in the region
of interest.

The second main type of code comparison examines
the turbulent properties of gas under the influence of some
driving mechanism. Price & Federrath (2010) compare the
ability of phantom and flash to model supersonic driven
turbulence and achieve similar results with comparable
numbers of resolution elements (5123). Despite similarities,
phantom is better at resolving dense structures, reaching
densities at 1283 resolution that flash only achieves at 5123.
The resolution of high density regions is best achieved with
SPH, but the grid resolves low density structures better.

In Kitsionas et al. (2009), decaying turbulence is mod-
elled with a variety of static grid and SPH codes. Grid codes
are found to be less dissipative, but for the same number
of resolution elements encouragingly similar results emerge.
They conclude that resolution rather than the method pri-
marily drives differences in turbulence simulations. Super-
sonic turbulence decay is also examined in Kritsuk et al.
(2011) as a test of magnetodynamics codes. While the na-
ture of the simulation set up is not completely relevant to
this work we emphasise the result that even quite similar
codes can generate different results due to minor code con-
struction choices.

The third common framework for code comparison is
galaxy formation in a cosmological context (Frenk et al.
1999; Pearce et al. 1999; Torrey et al. 2012; Kereš et al.
2012; Scannapieco et al. 2012). In works of this kind, insights
into the accuracy of the hydrodynamical methods can be
masked by dominant gravitational effects or by the method
of analysis which usually focuses on derived physical prop-
erties not directly relevant to the scope of this study. Forth-
coming comparisons in a cosmological context and with an
isolated disc is expected under the AGORA project (Kim
et al. 2014).

Finally, we mention Hopkins (2015) because in addition
to a very detailed look at a number of idealised tests, the au-
thor also provides a comparative analysis of a cold Keplerian
disc test and an isolated galactic disc, both of which are rel-
evant to the work presented here. Hopkins (2015) shows the
results of the viscous instability that affects SPH realisations
due to shear viscosity in the cold Keplerian disc. Grid meth-
ods do not suffer from numerical viscosity in this context,
but advection errors can cause rings to form in what should
be a uniform disc. The work also presents two new methods
in the form of a meshless lagrangrian code either with finite-
mass (MFM) or finite-volume (MFV) resolution elements,
which perform well in this test and others. The analysis of
isolated disc galaxy simulations is similar to what we present
in this work. Those runs have lower particle mass resolution
compared to ours but include star formation, stellar feed-
back, gas cooling and a live dark matter halo, central black
hole, disc and bulge initialized in equilibrium. The finding
here is that SPH runs are similar to one another and to the
MFM realisations, however MFV transfers mass outwards
due to an angular momentum advection error. It is partic-
ularly noteworthy that the critical flaw seen in SPH when
applied to the Keplerian disc problem (viscous instability)
does not manifest in this context because the pressure forces
are much higher and the large stellar/gas mass ratio allows
the stellar component to dominate and stabilise the gas disc.

The problem with determining the strengths and weak-
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nesses of different methodologies using idealised tests is
that the exact implementation used in those tests is often
changed when the codes are applied to real problems. One
example that stands out is that in idealised tests of AMR
codes, different refinement criteria are applied to that which
are used in production runs. In some cases there is a jus-
tification for not applying the same refinement criteria, i.e.
if the phenomenon being studied requires resolution based
on the local density or if the ideal criteria would resolve an
impractical amount of the volume which makes running the
simulation intractable. This is the case in simulations of iso-
lated galactic disc using AMR where resolution criteria are
usually ‘quasi-Lagrangian’ or designed to resolve the Jeans’
length rather than resolving local gradients, as used for ex-
ample when performing shock tube or blast wave tests.

2 METHOD

In this work we compare three simulation codes: ramses,
sphNG, and gizmo in a common framework. We simulate
the evolution of isothermal gas from an initially uniform sur-
face density disc under the influence of a disc galaxy gravi-
tational potential with a fixed spiral perturbation. We now
describe each of the codes employed in this work.

2.1 RAMSES

ramses (Teyssier 2002) is an AMR code in which gas dy-
namics are computed with a second-order unsplit Godunov
scheme.1 This scheme is inherently shock capturing with no
need to invoke artificial viscosity. Time steps are advanced
using a midpoint method with time centered fluxes at cell
boundaries used to update the hydrodynamical variables.
The time centered fluxes are determined using a second-
order Godunov method (otherwise known as the Piecewise
Linear Method). The duration of the time steps themselves
is limited by a modified Courant-Friedrichs-Lewy (CFL)
condition such that the time step is

∆tCFL =
∆xℓ

∑Ndim

i=1 (|ui|+ cs)

√
1 + 2CCFLǫGSR − 1

ǫGSR

(1)

where ∆xℓ is the linear extent of a grid cell at level ℓ
with Ndim(=3) dimensional velocity u and sound speed cs.
The right-hand part of equation 1 replaces the more tra-
ditional multiplication by the CFL factor, CCFL. This is
changed here to vary with the gravitational strength ratio,

ǫGSR = ∆xℓ

∑Ndim

i=1
|gi|

(

∑Ndim

i=1
(|ui|+ cs)

)2
(2)

where g is the gravitational acceleration experienced
by each grid cell. The right-hand part of equation 1 is equal
to CCFL for ǫGSR → 0 and is smaller (thus shortening the
timestep) when the gravitational acceleration is large rela-
tive to the local gas velocity. The ramses runs presented
here use CCFL=0.8. ramses supports different time steps

1 ramses is a publicly available code and can be found at
http://www.ics.uzh.ch/~teyssier/ramses/RAMSES.html

for each level of the grid but we have enforced complete syn-
chronicity so that the time step of coarse levels is identical
to, and thus limited by, lower levels.

ramses is equipped with a number of solver options, the
choices of which are rarely mentioned in literature. In this
work we follow Renaud et al. (2013) and use the acoustic
Riemann solver with the MinMod slope limiter, however we
also include a single run that uses the exact Riemann solver
and the MonCen slope limiter. We set the mesh-smoothing
parameter nexpand=1.

In this work we use different combinations of refinement
criteria which are now described. The first criterion ensures
that the Jeans’ length (λJ) is resolved by NJ cells. Each cell
on level ℓ is marked for refinement if

λJ

∆xℓ
< NJ. (3)

An alternative criterion forces refinement where the lo-
cal gradient in a variable q exceeds a fraction of the value of
that variable. Refinement occurs if the following condition
is satisfied,

Cq < 2 ·MAX

[∣

∣

∣

∣

qi−1 − qi
qi−1 + qi + fq

∣

∣

∣

∣

,

∣

∣

∣

∣

qi − qi+1

qi + qi+1 + fq

∣

∣

∣

∣

]

(4)

where i-1 and i+1 are the cells that bound cell i in
each dimension. The two user defined parameters here are
the threshold Cq and a pseudo-floor value fq. In this work
we use only the gradient in density for grid refinement. In
principle the gradient in any hydrodynamical variable may
be used, but as our simulations are isothermal, density and
pressure criterion are degenerate and we have found that for
our simulation set up, using velocity gradients as a criterion
for refinement adds very little if density gradients are already
being used.

One refinement scheme that we do not examine is the
quasi-Lagrangian scheme whereby the mass enclosed in a
given cell is compared to a threshold to determine if the cell
is massive enough to warrant refinement. We do not examine
this method because it is commonly used by combining the
mass from the gas phase and stellar particles, the latter of
which are not included in our simulations.

2.2 sphNG

The SPH code used here (referred to as sphNG) is a modi-
fied version of the code presented in Benz (1990). The den-
sity of a particle i is estimated through a weighted sum of
the mass (m) of itself and its neighbours;

ρi =
∑

j

mjW (|xi − xj |, hij) (5)

where the weighting function where W is the cubic
spline kernel which is a function of the particle positions x

and the mean smoothing length for each particle pair, hij .
Particles are assigned variable smoothing lengths according
to the local particle density (Price & Monaghan 2004). The
smoothing length and density are solved iteratively via the
Newton-Raphson method according to
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h = η(m/ρ)1/Ndim (6)

where η=1.2 is equivalent to a typical number of ∼58
neighbours for each particle. Artificial viscosity is used to
capture shocks following Monaghan & Lattanzio (1985) with
parameters αv=1 and βv=2 (after Monaghan 1992).

The code employs a second-order Runga-Kutta-
Fehlberg integrator (Fehlberg 1969) to evolve the hy-
drodynamics equations. Particles are assigned individual
timesteps, where the timestep of an individual particle is the
minimum value from several limiters: a conventional CFL
condition (CCFL=0.3)

∆tCFL =
CCFLh

cs + h|∇.v|+ 1.2(αvcs +MIN[0, βvh|∇.v|)]
(7)

where v is the particle velocity, a force condition which
limits the time-step depending on the net acceleration a on
a particle,

∆ta = CCFL

√

h

|a| (8)

and a third requirement that changes in a particle’s ve-
locity, acceleration and smoothing length do not exceed a
given tolerance, full details are given in Bate, Bonnell &
Price (1995).

2.3 GIZMO

gizmo (Hopkins 2015) is a hydrodynamics code, based on
the SPH code gadget-3, designed to accommodate the
benefits of both grid and particle based hydrodynamics
schemes.2 The method is based on the works of Lanson &
Vila (2008a,b) and Gaburov & Nitadori (2011), and has
some common features with moving-mesh codes such as
arepo (Springel 2010). gizmo uses a Lagrangian-like for-
mulation, where the volume is discretised using a weighting
function. The weighting function is similar to the kernel in
SPH though in contrast, the kernel gradients play no role in
the equations of motion as they do in SPH. The discretisa-
tion of the fluid is defined by an ensemble of particles that
trace the motion of the cells. Shocks are captured with a
Riemann solver, eliminating the need for artificial viscosity
(similar to the approach of Godunov SPH codes). There are
two new methods available in gizmo (as well as two different
versions of SPH with a number of viscosity switches); mesh-
less finite-volume (MFV) and meshless finite-mass (MFM)
methods. The methods differ in whether the particles/cells
are allowed to experience a mass flux between their neigh-
bours (MFV) or whether their masses are fixed (MFM). The
methods appear to differ only slightly in the test problems
shown in Hopkins (2015), especially relative to the differ-
ences seen when compared to pure grid or SPH methods.

The time integration scheme used in gizmo is a second

2 gizmo is a publicly available code and can be found at
http://www.tapir.caltech.edu/~phopkins/Site/GIZMO.html

order leapfrog integrator very similar to arepo and gad-

get2 (Springel 2010) and is described in detail in the ap-
pendix G of Hopkins (2015). Local time-steps are used in all
modes so that for each particle the timestep is

∆tCFL = 2CCFL

h

|vsig |
(9)

where h is the kernel smoothing length and |vsig | is the
signal velocity (Whitehurst 1995; Monaghan 1997; Hopkins
2015). For the gizmo runs we use a CFL factor of CCFL=0.1,
however note that the CFL factor is used differently by
each of the codes and in particular the way that gizmo and
sphNG employ this value is not directly comparable with
the CFL factor used in RAMSES due to the different way
in which resolution is defined for each framework. Time-
steps in gizmo are also limited to prevent spurious events of
particle interpenetration when neighbouring particles have
very different in time-steps (Saitoh & Makino 2009; Durier
& Dalla Vecchia 2012; Hopkins et al. 2014). The time-step
may be further restricted depending on the acceleration of
particles, with ∆ta = (2αkǫgrav/|a|)1/2 after Power et al.
(2003), where ǫgrav is the force softening length (4 pc) and
αk=0.02.

The MFM and MFV gizmo modes use a stan-
dard Harten-Lax-van Leer-Contact (HLLC) Riemann solver
(Toro 1999; Miyoshi & Kusano 2005) as the default method.
In the rare cases where the HLLC solver returns a non-
physical result, the code automatically falls back on the
slower but more accurate exact solver described in Toro
(1997). Flux-limiting is used for the purposes of maintain-
ing numerical stability but we direct the interested reader to
appendix B of Hopkins (2015) for a complete and detailed
description of how this is implemented in gizmo.

One of the SPH modes of gizmo is the traditional
density-weighted approach (such as that of gadget2

(Springel 2005), upon which gizmo is partly based) which
uses a standard artificial viscosity scheme with no additional
measures to allow fluid mixing instabilities (e.g Ritchie &
Thomas 2001; Price 2008). While operating as an SPH code,
a density estimation is required, the density is determined
in the same way as for sphNG (described in §2.2) but with
some differences: i) the typical number of neighbours differs
with gizmo particles having ∼32 rather than ∼58 and ii)
the smoothing length used to scale the kernel is simply hi

rather than the mean h of each particle pair.
Another method available in gizmo is ‘PSPH’ (Saitoh &

Makino 2013; Hopkins 2013), in which the equations of mo-
tion are rearranged to combat fluid mixing instabilities, and
also includes artificial conductivity (Price 2008). In the ‘tra-
ditional’ approach the pressure is calculated using the den-
sity estimate, for PSPH the pressure is instead determined
from the neighbouring particles using kernel smoothing in
the same way as with density.

2.4 Initial Conditions and External Gravitational

Potential

We initialise our simulations as a uniform disc with a surface
density of 8 M⊙ pc−2 and an outer radius of 10 kpc. Gas is
distributed vertically with a sech2(z/H) profile, where the
vertical scale-height, H=0.18 kpc. For our ramses runs we
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set a density floor of 6.8×10−32 g cm−3. The gas is isother-
mal and has a temperature of 1000 K.We neglect self-gravity
in order to investigate the gas response solely to the exter-
nal gravitational potential. The gas is initially set up with
circular orbits according to the underlying gravitational po-
tential. The potential is intended to proxy a rotating stellar
mass distribution and is given the logarithmic form from
Binney and Tremaine (1987),

ψ(r, z)disc =
1

2
v20 log[r

2 +R2
c + (z/qΦ)

2] (10)

which yields a flat rotation curve with v0=220 km s−1.
The radial and vertical shape of the potential is set by
Rc=1 kpc and qΦ=0.7. To this potential we add a spiral
perturbation of the form given by Cox & Gómez (2002)

ψ(r, φ, z) = −4πGHρ0 exp
(

− r − r0
Rs

)

×
3

∑

n=1

Cn

KnDn
cos(nγs)

[

sech
(Knz

βn

)]βn

(11)

where

γs = N
[

θ + Ωpt−
r/r0
tan(α)

]

, (12)

Kn =
nN

rsin(α)
, (13)

βn = KnH(1 + 0.4KnH), (14)

Dn =
1 +KnH + 0.3(KnH)2

1 + 0.3KnH
, (15)

C1 = 8π/3, C2 = 1/2, C3 = 8π/15.

The parameters r0=8 kpc, Rs=7 kpc and H=0.18 kpc
set the scaling of the spiral perturbation in three dimen-
sions, N=2 is the number of spiral arms. The pitch angle
is α=15◦ and the pattern speed is Ωp=2×10−8 rad yr−1.
The strength of the spiral perturbation is ρ0 = mHnH with
nH=1 atom cm−3. The effective stellar mass of this potential
is ∼1011 M⊙.

With these parameters the corotation radius is just be-
yond the edge of the disc at around 11 kpc. Thus the gas
rotation speed within the entire disc exceeds that of the spi-
ral perturbation and gas shocks at the trailing edge of the
perturbation.

We have made runs using each code but without apply-
ing the spiral perturbation to determine if any significant
features arise within a uniform disc. In this case we note
some weak concentric rings; these are not related to spuri-
ous angular momentum transfer but instead are ripples re-
sulting from the imperfect initial pressure equilibrium. We
do not think these ripples have any impact on our results
for two reasons: i) the density contrast of the rings is much
weaker than that caused by the spiral potential at all radii
and ii) we have repeated our baseline runs starting with the
disk in vertical pressure equilibrium to reduce the impact of
the ripples and see no difference in the results.

Figure 1. Resolution vs. density for the different codes employed
in this study. Magenta square symbols are ramses leaf cells and
the resolution is the length of each cell. For sphNG (red cross
symbols) and gizmo (blue triangular symbols) the resolution is
taken as twice the smoothing length (see Hopkins (2015) for an
in-depth discussion on the use of the kernel length in gizmo). For
clarity we show only 500 randomly selected resolution elements
from each of the simulations.

2.5 Full Simulation List

A full list of the simulations used in this work is shown in
Table 1 with all the parameters that are varied. Four of the
runs represent our ‘baseline’ models which reflect the choices
made in most of the work on isolated galaxy simulations
with external potentials: these are, RAMSES-1 , SPH-1 ,
GIZMO-MFM , and GIZMO-MFV . We selected these runs
to represent the typical resolutions found in the literature,
4×106 particles and 4 grid cells per Jeans’ length for particle
and AMR runs respectively.3 We begin with these runs and
later move on to discuss the effect of resolution on a given
code.

Given the difficulty in directly comparing resolutions
for grid codes with those in particle codes, we illustrate the
comparative size of the simulation elements for our baseline
simulations in Fig. 1, showing the length of grid cells (for a
ramses run) and twice the smoothing length (for the gizmo
and sphNG) versus density.4 Our goal here is to compare the
simulation codes as they are used in the literature, but mak-
ing sure that anything which can overtly affect the physics of

3 RAMSES-1 does not refine the grid to the maximum possible
resolution, only reaching level 12 due to the high tolerance of
its refinement criteria. All other ramses runs make use of the
relevant maximum level.
4 Note that the smoothing length in gizmo is calculated the same
as for an SPH code, but is not used in the same fashion for
smoothing the particle distribution.

 at U
niversity of H

ull on June 1, 2016
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


Table 1. Overview of the simulation parameters. The top, middle and bottom sections describe the ramses, sphNG, and gizmo runs
respectively. Column (1): simulation reference name; column (2): maximum refinement level and corresponding physical size of smallest
grid cell in pc; column (3): the number of grid cells or particles at the end of the simulation (250 Myr); column (4): number of cells
resolving the Jeans’ length; columns (5) and (6): refinement parameters based on density gradients (see Eq. 4); columns (7) and (8):
Monaghan & Lattanzio (1985) artificial viscosity parameters; column (9): Notes for each run, e.g. code type, solvers and viscosity schemes.

name ℓmax (pc) Nel NJ Cρ fρ αv βv notes

RAMSES-E 14 (3.07) 1.808×106 4 - - - - AMR, exact solver + MonCen slope limiter
RAMSES-1 14 (3.07) 9.971×105 4 - - - - AMR, acoustic solver + MinMod slope limiter

RAMSES-2 14 (3.07) 5.362×106 8 - - - - AMR, acoustic solver + MinMod slope limiter
RAMSES-3 14 (3.07) 2.613×107 16 - - - - AMR, acoustic solver + MinMod slope limiter
RAMSES-4 15 (1.54) 2.637×107 16 - - - - AMR, acoustic solver + MinMod slope limiter
RAMSES-5 12 (12.3) 3.037×106 4 1.3 5.3 - - AMR, acoustic solver + MinMod slope limiter
RAMSES-6 13 (6.15) 5.156×106 4 1.3 5.3 - - AMR, acoustic solver + MinMod slope limiter
RAMSES-7 14 (3.07) 7.676×106 4 1.3 5.3 - - AMR, acoustic solver + MinMod slope limiter
RAMSES-8 14 (3.07) 2.366×106 4 1.6 5.3 - - AMR, acoustic solver + MinMod slope limiter
RAMSES-9 14 (3.07) 6.651×106 4 1.0 5.3 - - AMR, acoustic solver + MinMod slope limiter

SPH-1 - 4×106 - - - 1 2 SPH + Monaghan & Lattanzio (1985) viscosity
SPH-2 - 1×106 - - - 1 2 SPH + Monaghan & Lattanzio (1985) viscosity
SPH-3 - 8×106 - - - 1 2 SPH + Monaghan & Lattanzio (1985) viscosity
SPH-4 - 4×106 - - - 0.05 0.1 SPH + Monaghan & Lattanzio (1985) viscosity

GIZMO-MFM - 4×106 - - - - - mesh-less finite mass
GIZMO-MFV - 4.593×106 - - - - - mesh-less finite volume
GIZMO-MFV-2 - 9.188×106 - - - - - mesh-less finite volume
GIZMO-MFV-3 - 1.131×106 - - - - - mesh-less finite volume
GIZMO-SPH-NS - 4×106 - - - - - SPH + no viscosity switch (constant viscosity)
GIZMO-SPH-B - 4×106 - - - - - SPH + Balsara (1995) viscosity
GIZMO-SPH-C&D - 4×106 - - - - - SPH + Cullen & Dehnen (2010) viscosity
GIZMO-PSPH - 4×106 - - - - - PSPH + Cullen & Dehnen (2010) viscosity

the gas is kept the same, e.g. equation of state. Fig. 1 shows
that the resolutions of the baseline runs cover roughly the
same range of spatial resolutions except that ramses ex-
tends to much lower densities than the Lagrangian runs.
Fig. 1 also illustrates that both Lagrangian codes follow a
very tight relation between density and resolution which is
not the case with ramses.

3 RESULTS

All the simulations presented here start from an initially
flat surface density distribution within the disc region. In
the absence of self-gravity the ISM responds to the exter-
nal potential and pressure forces leading to an increase in
the density of arm regions over time, however we note that
we do not form a steady state at any point in our simula-
tions. Initially there are only two arms which form around
the spiral perturbation. This is shortly followed by the de-
velopment of second pair of arms between the existing ones.
These new features branch from the original arms at ∼5 kpc
from the center. The appearance of secondary arm features
are well documented as arising from the first ultraharmonic
(4:1) resonance (Shu, Milione & Roberts 1973; Patsis, Gros-
bol & Hiotelis 1997; Chakrabarti, Laughlin & Shu 2003).
We show face-on surface density maps for the four baseline
models in Fig. 2 in which the original arms and the bifurcat-
ing secondary arms are visible. Both features are most clear
for RAMSES-1 in the upper left panel.

A frequent criticism of grid codes is that angular mo-

mentum is not conserved. For the duration of the runs per-
formed in this work (250 Myr) we calculate the loss of angu-
lar momentum in the AMR runs as ∼3% and in the SPH and
GIZMO runs at ∼0.3%. We do not believe that angular mo-
mentum loss is a significant cause of the differences we find
here, but it may play a more important role in simulations
for which self-gravity results in the formation of small-scale
eddies.

3.1 Overall structure of the disc with different

numerical codes

The different codes tested here respond to the external po-
tential in slightly different ways. Fig. 2 reveals significant
differences between the RAMSES-1 and SPH-1 runs, with
less dense arms and far less fine structure between arms ap-
pearing in RAMSES-1 . The sphNG and gizmo runs clearly
show the presence of short inter-arm structures perpendicu-
lar to the arms, sometimes referred to as ‘spurs’ or ‘feathers’,
in the inner part of the disc. These features have been seen
in both grid, SPH and arepo (Smith et al. 2014) simula-
tions, and have been attributed to a number of potential
causes including the Kelvin-Helmholz or wiggle instability
(Wada & Koda 2004), feathering instability (Lee 2014) and
orbit crossing in the spiral arms (Dobbs, Bonnell & Pringle
2006), although Kim & Ostriker (2006) suggest purely hy-
drodynamical instabilities disappear or are less evident in
3D. Although there is some slight indication of substruc-
ture in the inner part of the RAMSES-1 disc, distinct spurs
are not visible. The differences between the sphNG and
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Figure 2. Surface density maps for the baseline models at 250 Myr. The panels show RAMSES-1 (top-left), SPH-1 (top-right),
GIZMO-MFV (bottom-left) and GIZMO-MFM (bottom-right) runs. We overlay black circles to indicate the location of the annuli at
4±0.1 kpc and 7±0.1 kpc that are used for the analysis in section 3.2. sphNG and gizmo particles are both smoothed over a cubic spline
kernel.

gizmo runs are largely confined to the strength of the rings
found within the central 3 kpc. The two gizmo runs are
not identical: (GIZMO-MFV has less coherent rings than
GIZMO-MFM ) but are very similar to one another when
compared with the other two runs. The growth of rings in
a non–self-gravitating gas disc is also found in grid-based
simulations by Shetty & Ostriker (2006), in which leading

spiral structures develop between the arms near the center
of the disc.

Fig. 3 shows the mean density as a function of distance
from the mid-plane for the four baseline simulations at the
250 Myr mark. In this comparison we also include a run,

labelled as RAMSES-E , which is the same as RAMSES-1

in all respects except the choice of solver and slope limiter.
The majority of our ramses simulations use quite a diffusive
combination of the acoustic Riemann solver with a MinMod
slope limiter, the RAMSES-E run uses the exact Riemann
solver with the MonCen slope limiter. We use this run to
demonstrate the result of using a less diffusive combination.
RAMSES-1 does not reach the same mass concentration as
the Lagrangian runs, having only approximately half the
mid-plane density of the least concentrated Lagragian run.
The RAMSES-E run however has a vertical density profile
with a slope that is not too dissimilar from the gizmo runs.
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Figure 3. Mean density as a function of distance from the disc
plane. Models RAMSES-1 , RAMSES-E , SPH-1 , GIZMO-MFV ,
and GIZMO-MFM are shown as solid magenta, solid black,
dashed red, light blue dot-dashed, and dark blue triple-dot-dashed
lines respectively.

The two discs realised with gizmo are more concentrated
than the spgNG run despite having the same particle reso-
lution.

The one-dimensional structure of the ISM can be ex-
amined in the form of a density probability distribution
function (PDF) as plotted in Fig. 4. It indicates a consis-
tent density peak for all the runs, but differences do appear
in the distributions. The maximum density is curtailed at
101.3 nH cm−3 in RAMSES-1 while the Lagrangian runs ex-
tend continuously to around 101.7 nH cm−3. The PDFs of
both ramses runs extend down to very low densities in con-
trast with the Lagrangian simulations, simply because there
are resolution elements in the ramses runs that are not rep-
resented by particles in the other codes. We next describe
the evolution of the spiral arms over time and will discuss
the difference between the codes further in Section 3.3.

3.2 Growth of Arm Densities

We now consider the surface density of the gas within two
annuli, analysing the azimuthal profile at a number of snap-
shots throughout the runs. The time evolution of azimuthal
variations in surface density for the SPH-1 run is shown in
Fig. 5 for annuli at 4±0.1 kpc and 7±0.1 kpc. We show this
run as an example which reflects the typical behaviour of
all the runs present here. The 4 kpc annulus (upper panel
in Fig. 5) illustrates the increasing surface density of the
arms until ∼150 Myr, whereupon smaller variations in the
peak surface density are present for the remainder of the
simulation. The annulus at 7 kpc (lower panel in Fig. 5)
shows the same initial increase but with larger variations in
the peak arm surface density throughout the run as well as
exhibiting the later formation of a secondary arm feature

Figure 4. Mass-weighted probability density function for the
baseline simulations. Linestyles are the same as in Fig. 3.

not seen at smaller radii. The effect of the delay between
the development of the first and second set of arms is to
create oscillations in the maximum surface density. The sec-
ondary arms grow downstream in the gas flow and as its
density increases, the density of the earlier arm dwindles.
This temporarily reduces the maximum surface density until
the second arm becomes dominant and the maximum sur-
face density increases again, now representing the secondary
arms.

Oscillations in the density of the arms are also expected
due to the abrupt activation of the spiral potential. In Wood-
ward (1975) the steepening of spiral waves under the influ-
ence of an arm potential that grows over different timescales
is examined, finding that there is an initial period of density
oscillation which decays over time. Woodward (1975) also
demonstrate that the more extreme and persistent oscilla-
tions occur in the runs where the spiral potential is activated
over shorter timescales. A gradually introduced potential re-
duces the problem of these initial oscillations but for simplic-
ity, and because it is not common practice to do so, we have
not employed such a measure. A gradually introduced po-
tential does occur naturally in simulations with a live stellar
component without initial spiral structure.

Fig. 6 shows two annuli at 4±0.1 kpc and 7±0.1 kpc
and the maximum surface density within each annulus as a
function of time for each of our baseline models. Fig. 6 thus
illustrates the growth of the density of the arms over time.
We include only one of the gizmo runs here (GIZMO-MFV )
because its counterpart (GIZMO-MFM ) is extremely simi-
lar, see Fig. 2. There are substantial differences in the surface
density of the arms attained for each of the codes. In Fig. 6
we see that particularly at smaller radii the sphNG runs
differ from the gizmo runs in the timing and amplitude of
the oscillations in arm surface density. Lastly we note the
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Figure 5. Azimuthal profiles of surface density for the SPH-1 run
in the rotating frame of reference of the external potential. The
two panels show different radial annuli (upper: 3.9<r/kpc<4.1
and lower: 6.9<r/kpc<7.1) and each line represents a different
time through the run. We choose the two annular rings as one
example at a smaller radius where no secondary arm emerges
and a larger radius where it does.

considerable difference between RAMSES-1 and the sphNG

and gizmo runs, with much lower densities found in the arm
regions and lower amplitude oscillations, indeed these oscil-
lations are virtually absent in the RAMSES-1 run. When
one considers RAMSES-E there is an interesting difference
in the evolution at different radii. At 4 kpc the oscillations

Figure 6. Maximum arm surface density for two annuli
(4±0.1 kpc and 7±0.1 kpc) as a function of time. Linestyles are
the same as in Fig. 3.

are now to some degree apparent and the arm surface den-
sity is only slightly lower than the runs produced with the
other codes, however at 7 kpc RAMSES-E is not very differ-
ent to RAMSES-1 apart from a slight increase in the surface
density.

3.3 Dependence of disc evolution on numerical

code

Our comparisons of the baseline galaxy disc simulations
highlight a number of differences between the codes, partic-
ularly the sphNG and gizmo runs compared with ramses.
The maximum density in the spiral arms, maximum den-
sity in the midplane and the degree of interarm structure
including the secondary branches are greater with gizmo

and sphNG, more so in the gizmo runs. We now consider
which characteristics of the codes might lead to these dif-
ferences. The most obvious possibilities are that the codes
reach different effective resolutions, or the inclusion of ar-
tificial viscosity in sphNG. We discuss viscosity next, and
describe resolution tests of the codes in Sections 3.4 and 3.5.

sphNG runs employ artificial viscosity to allow shock
capturing, but artificial viscosity is not required in either
ramses or gizmo as both use a Riemann solver. For this
reason we do not believe that the discrepancy between
RAMSES-1 and the other runs in Fig. 6 is due to different
viscosity schemes. Additionally we have run sphNG with
reduced viscosity parameters, αv=0.05 and βv=0.1. These
viscosity parameters yield an arm surface density growth
rate (without oscillations) similar to RAMSES-1 but shock
capturing is compromised by reducing the artificial viscosity
so harshly.

gizmo can also be operated as an SPH code with various
viscosity switches. In order to further eliminate the influence
of viscosity as the cause of differences between the inviscous
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MFM and MFV methods of gizmo and the artificially vis-
cous sphNG we have run our model with a number of these
modes (detailed in Table 1).

These models are compared with GIZMO-MFV and
SPH-1 in Fig. 7. It is clear that the artificial viscosity
scheme makes little difference and all gizmo modes behave
in roughly the same way. Therefore, the cause of the dis-
crepancy found between the sphNG and gizmo runs is not
a basic difference in the SPH or the meshless Lagrangian
methods of Hopkins (2015). The fact that, despite some mi-
nor differences, the evolution of the gizmo SPH runs are
far more similar to GIZMO-MFV than they are to SPH-1

means that it is likely that some aspect of the code is respon-
sible for the offset between the two codes that is separate
from the fundamental methodologies. We have not explored
the codes in sufficient detail to offer a definitive explanation
of this but note that, apart from the core hydrodynamics
solver, all components of gizmo are commons to both the
MFV/MFM and SPH modes. The different results found
with sphNG and gizmo may therefore be due to differences
in the neighbour finding process, the time-step criteria or
time integration.

We note that the SPH kernel for gizmo and sphNG is
a cubic spline but that the smoothing length is defined dif-
ferently with the smoothing lengths in gizmo being smaller
(see Fig. 1). Exploring this, we have rerun GIZMO-MFM

and GIZMO-SPH-C&D with the same particle smoothing
lengths as our sphNG runs and find that it makes very lit-
tle difference to the arm surface density and density PDF,
however the vertical concentration is slightly reduced and
therefore closer to the profile of SPH-1 . We also observe a
slight weakening of interarm structures when using larger
smoothing lengths.

3.4 Resolution of sphNG and GIZMO Runs

In this section we consider how our two Lagrangian codes
(sphNG and gizmo) evolve differently with varying mass
resolution. The evolution of the arm surface density for runs
that initially have 1×106, 4×106, and 8×106 particles are
shown in Fig. 8. The number of particles in sphNG and
gizmo-MFM runs is fixed, but the gizmo-MFV runs allow
particle splitting and increase the number of particles over
the course of the simulation. The final number of particles for
GIZMO-MFV-3 , GIZMO-MFV , and GIZMO-MFV-2 are
1.131×106 , 4.593×106 , and 9.188×106 respectively.

For both of the Lagrangian codes, the evolution of the
peak surface density is invariant with resolution, i.e. the rate
of arm growth is unaffected. sphNG and gizmo runs do not
show much difference in the surface density of the galaxy
arms as a function of resolution, but we do find differences
between the codes themselves. Despite the codes presenting
a similar time-averaged growth curve, the oscillations dis-
cussed in the previous section are offset in time (see Fig. 8).

Despite the invariance of the maximum surface density
with resolution we do see that the vertical density profiles
are steeper for runs with higher resolution, as shown in Fig. 9
and consequently the peak volume density is enhanced by
resolution. As the particle resolution is increased (and the
smoothing length shortens) the vertical density profiles is
improved. The gizmo runs exhibit steeper density profiles

Figure 7. Maximum arm surface density for two annuli
(4±0.1 kpc and 7±0.1 kpc) as a function of time for vari-
ous SPH modes run with gizmo and the baseline gizmo run,
GIZMO-MFV . We also show SPH-1 and SPH-4 to compare
the evolution with lower artificial viscosity. Red and orange
dashed lines are sphNG, GIZMO-MFV is show in blue, and runs
and green–cyan lines are runs with gizmo in SPH mode. The
GIZMO-PSPH almost exactly follows the GIZMO-SPH-C&D

run.

than do the sphNG, this is partially due to the different
definition and use of the smoothing length/particle domain.

The mass-weighted density PDFs for our resolution
comparison of Lagrangian runs are shown in Fig. 10. For
both sphNG and gizmo, increased resolution broadens the
distribution and increases the fraction of gas at lower den-
sities. gizmo runs have a consistently narrower distribution
in the high density peak but extend to lower densities than
their sphNG counterparts. The maximum density achieved
by all the runs is quite consistent with the sole exception of
SPH-2 (the lowest resolution SPH run) which is truncated
around 0.2 dex below the others.

3.5 Resolution of AMR runs

Resolution in AMR simulations is not a linear characteristic.
We can change the minimum and maximum refinement lev-
els or the parameters governing refinement. In this section
we compare a number of approaches to varying the reso-
lution within ramses. In addition to the previously shown
run (RAMSES-1 ) which employs a Jeans’ length refinement
criterion with the typical threshold NJ=4 we now test the
effect of varying NJ and Cρ, which control grid refinement
according to the local Jeans’ length and density gradients
respectively. We also vary ℓmax which is the upper limit on
the grid level. The specific parameters used in each run are
detailed in Table 1. We now discuss these three parame-
ters that control refinement in turn using the mass-weighted
density PDFs in Fig. 11 and the maximum surface density
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Figure 8. Maximum arm surface density as a function of time
for sphNG (red/orange dashed lines) and gizmo (blue dot-dashed
lines) runs with different resolutions (initially with 1, 4 and 8
million particles). Darker colours represent greater resolutions.

Figure 9. The vertical density profiles of sphNG (red/orange
dashed lines) and gizmo (blue dot-dashed lines) runs with differ-
ent resolutions (initially with 1, 4 and 8 million particles). Darker
colours representing greater resolutions.

Figure 10. Mass-weighted probability density function for
Lagrangian simulations with different resolutions. Lines show
sphNG (red/orange dashed lines) and gizmo (blue dot-dashed
lines) runs that initially have 1, 4 and 8 million particles, darker
colours represent greater resolutions.

within annuli at 4±0.1 kpc and 7±0.1 kpc as a function of
time in Fig. 12.

Firstly, we consider the effect of increasing ℓmax which
permits the code to refine the grid to higher levels. For this
we direct the reader to the runs shown in the top panel
of Fig. 11, i.e. we compare RAMSES-3 and RAMSES-4

which have ℓmax= 14 and 15 respectively but with all other
refinement criteria the same. We also compare three runs
that have an alternative set of refinement criteria to the
previous two which use ℓmax= 12, 13 and 14 (RAMSES-5 ,
RAMSES-6 and RAMSES-7 ), see Table 1 for details. We
see here that increasing ℓmax does not have an enhanc-
ing influence on these simulations, indeed RAMSES-3 and
RAMSES-4 have identical density PDFs. We further ex-
amine the growth of the spiral arm surface density in the
left-hand panels of Fig. 12. Again we note that varying ℓmax

makes almost no difference to the evolution of the galactic
disc, although in this case there is a marginal reduction in
arm surface density as ℓmax increases for both the 4 and
7 kpc annuli in the case of RAMSES-5 , RAMSES-6 and
RAMSES-7 .

We now consider whether increasing the number of grid
cells that resolve the Jeans’ length (NJ) has an influence on
the simulations. RAMSES-1 , RAMSES-2 , and RAMSES-3

have NJ = 4, 8 and 16 respectively and are shown in the
middle panel of Fig. 11. We note a marked increase in the
maximum density achieved when NJ takes greater values.
In fact the densest end of the density distribution function
for RAMSES-3 (for which NJ=16) is consistent with that
found in the gizmo and sphNG runs. The central panels of
Fig. 12 illustrate how increasing NJ alters the growth of the
spiral arms. We see that greater values of NJ produce higher
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surface densities at 4 kpc. At 7 kpc we see simply that as NJ

increases, the oscillations that are clearly present in sphNG

and gizmo runs (see Fig. 5) become more apparent.

One key strength of grid codes is the ability to resolve
sharp density contrasts, achieved partially through the use
of refinement criteria based on the local gradient in hydrody-
namical variables. The final comparison we make varies the
threshold that controls grid refinement based on the density
gradients, Cρ. A lower value of Cρ corresponds, in principle,
to greater resolution. We compare RAMSES-8 , RAMSES-7 ,
and RAMSES-9 (in order of decreasing Cρ) in the bottom
panel of Fig. 11 and right-hand panel of Fig. 12. In this com-
parison we also include RAMSES-1 which effectively has an
infinite threshold, i.e. no grid refinement is permitted based
on density gradients. We recall here that RAMSES-1 does
not make use of grid levels 13 and 14 and choosing a finite
Cρ allows the adaptive grid to make use of these levels.

In Fig. 11 (lower panel) we note a slight increase in the
maximum density value as Cρ decreases. The lowest Cρ run
(RAMSES-9 ) does not follow the trend of increasing peak
density but this is likely linked to it having fewer grid cell
than RAMSES-7 despite its lower Cρ. We therefore note
that the higher density correlates more with the number of
grid cells than with the gradient refinement threshold and
likely does not reflect the ability of this refinement scheme
to place cells in appropriate locations. Examining the inner
annulus in Fig. 12 (upper right-hand panel) gives no clear
indication of whether the value of Cρ has any impact on the
arm surface density. The outer annulus (lower right-hand
panel in Fig. 12) however suggests that the lower threshold
does enhance the oscillations of the arm surface density.

We find that, in the context of our galactic disc simula-
tions, the grid structure is very sensitive to Cρ. We therefore
find that decreasing Cρ can lead to very little increase in res-
olution (because the grid is already refined to an extent by
the Jeans’ length criteria), or it can refine the grid to such a
degree that the simulation time increases disproportionately
compared with other approaches. We find that despite the
lower value of Cρ in RAMSES-9 than in RAMSES-7 (which
should mean that it refines grid cells more easily) we actually
have fewer grid cells by the end of the simulation. For the
first 150 Myr, the number of grid cells found in RAMSES-9

is much higher than in RAMSES-7 , consistent with its lower
refinement threshold, but it then declines gradually to the
value found in Table 1.

Surface density maps for our baseline ramses run and
the two resolution tests that are most similar to the La-
grangian runs (RAMSES-3 and RAMSES-9 ) are compared
in Fig. 13. Both these higher resolution runs have sharper
arms but also exhibit more inter-arm structure. RAMSES-3 ,
which resolves the Jean’s length with 16 grid cells, presents
hints of the rings seen in the Lagrangian runs and secondary
arms that extend further beyond the branching point (as
seen in the Lagrangian runs in Fig. 2). Similar structures are
seen in RAMSES-9 , although more feathers are seen near
the center and the secondary arms are not as extended. The
emergence of these structures in the higher resolution runs
hints that concordance with the Lagrangian runs is closer.

Figure 11. Mass-weighted probability density functions for ram-

ses runs with different refinement schemes. In the top panel we
compare runs with differing values of ℓmax. The middle panel com-
pares different NJ values. The lower panel shows runs with differ-
ent density gradient refinement thresholds (Cρ). Darker colours
represent greater resolutions: see Table 1 for details of the param-
eters used in each run.

4 DISCUSSION AND CONCLUSIONS

We have examined how an isothermal gas disc evolves under
the influence of an external spiral potential when realised
with different hydrodynamical methods (ramses, sphNG,
and gizmo) and as a function of resolution. With similar
resolutions to those found in the literature (and using the
‘acoustic’ solver with a MinMod slope limter) we find that
our AMR code, ramses, generates a weaker density contrast
between the arm and inter-arm region, less steep vertical
profiles and lower arm surface densities than we see when
using the Lagrangian codes (sphNG and gizmo) as well as
less inter-arm structure. When additional refinement mea-
sures are used, ramses generates results in better agreement
with the other codes. If a less diffusive set up is used (i.e. an
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Figure 12. Maximum arm surface density as a function of time for ramses runs with various refinement schemes. The upper panels
illustrate the evolution of the spiral arms at 4±0.1 kpc and the lower panels at 7±0.1 kpc. The left-hand panels compare runs with
differing values of ℓmax. The middle panels show runs with different NJ. The right-hand panels show runs with different density gradient
refinement thresholds (Cρ). Darker colours represent greater resolutions: see Table 1 for details of the parameters used in each run.

Figure 13. Surface density maps for our baseline ramses run (RAMSES-1 ) and for the two highest resolution runs using NJ and
Cρ criteria (RAMSES-3 , and RAMSES-9 respectively) after 250 Myr have passed. Black circles indicate the location of the annuli at
4±0.1 kpc and 7±0.1 kpc used in our analysis. The most significant difference between these runs is the concentration of the arms and
the presence of more inter-arm structure in the higher resolution runs.

‘exact’ solver with a MonCen slope limiter) then a measure
of similarity is also achieved in the resolution of physical
structures, vertical density profile, and the density PDF.
The growth of spiral arm surface density is also enhanced
to a similar level as seen in the Lagrangian codes but only
at smaller radii: arm surface density is still relatively low at

greater radii. In all codes, we also see oscillations in the peak
arm surface density, which appear to be associated with the
development of secondary arms, but the oscillations tend to
be very weak with the baseline ramses model. The gizmo

and sphNG codes also display small differences, namely that
gizmo produces the highest densities and surface densities.
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To test why the differences occurred between the codes,
we considered the resolution and viscosity. We found reso-
lution had little effect on the Lagrangian runs, except for
an increasing steepness of the vertical density profiles with
resolution. Whilst artificial viscosity could potentially ef-
fect the results with the sphNG code, our fiducial gizmo
runs do not include artificial viscosity, so this cannot ex-
plain the discrepancies between gizmo and ramses. Further-
more, using gizmo in ‘SPH mode’ (with constant, Balsara
(1995), and Cullen & Dehnen (2010) viscosity schemes and
with pressure-entropy based SPH) we find very little differ-
ence between those runs and the equivalent MFM and MFV
gizmo modes (without viscosity). By reducing the artificial
viscosity by a factor of 20, the sphNG models produced
more similar results to the baseline ramses run, however
this dramatic change in viscosity greatly reduces the abil-
ity of sphNG to accurately capture shocks. Thus we believe
that the differences between ramses and the sphNG/gizmo
runs, and between sphNG and gizmo are not due to viscos-
ity. Differences in the choice of smoothing length and the
functional form of the kernel partly account for the differ-
ences between our sphNG and gizmo runs.

We also investigated varying the resolution in the ram-

ses code using a number of approaches. We first used the
most intuitive approach, increasing the maximum refine-
ment level ℓmax, but surprisingly this made almost no differ-
ence. The reason for this was because the code was simply
not saturating the maximum refinement level. We stress here
though that our simulations are isothermal and do not in-
clude self-gravity, gas cooling, or any sources of forcing other
than our external potential. These processes could drive the
density up and force the grid to refine even without changing
the refinement criteria, though it is not clear that this would
improve the modelling of spiral arms more generally or, for
example, the initial development of Jeans’ instabilities.

We secondly tried using refinement criteria based on
density gradients (the kind conventionally employed in ide-
alised code comparison tests), which we might expect would
lead to greater refinement and better agreement with the
arm densities seen with the other codes. However, we find
that the parameters controlling such refinement schemes are
not trivial to select a priori. We tend to find only slight dif-
ferences in the density PDF and, observe a small increase
in the scale of oscillations in the arm surface density over
time. Our model RAMSES-9 shows best agreement with the
other codes, but we note that in this run we were refining
a significant fraction of the disc, which leads to an large
increase in computing time due to refining regions unnec-
essarily. Again, we note that these results are true for our
particular model choices and hydrodynamical gradient cri-
teria may be of benefit under other frameworks, e.g. when
supernovae blastwaves are included.

Thirdly we examined increasing refinement by increas-
ing the number of grid cells resolving the Jeans’ length,
NJ. We find that the greatest, and most reliable, improve-
ment (in the sense of providing more concordance with other
methods) in the density PDF, vertical density profile and
evolution of the surface density is found by increasing NJ.
By changing NJ from 4 to 16 we find greater similarities
between our AMR and Lagrangian tests. In addition to the
spiral arms, the resolution of the inter-arm regions is also im-
portant, one reason being that dense structures leaving the

refined region should be preserved. To some extent our high-
est resolution ramses runs do preserve the inter-arm struc-
tures found in the Lagrangian runs. Although there are still
differences between ramses and the other codes, this find-
ing is in line with other comparison tests that show more
similar results tend to be attained with grid and particle-
based codes (Tasker et al. 2008; Kitsionas et al. 2009; Price
& Federrath 2010) if the resolution is comparable or greater
in the grid code. Our results also seem to concur with the
idea in Price & Federrath (2010) that grid-based codes tend
to be less effective at resolving denser regions of simulations.

Our findings that the density in spiral arms differs ac-
cording to different numerical codes (we stress that here we
mean ‘code’ and not ‘method’), and further that the growth
of the maximum density differs, may have implications for
studying star formation in spiral arms. The different den-
sities may impact the timescales for gravitational collapse,
properties and number of molecular clouds, and the rate
and efficiency of star formation. This may be even more rel-
evant for simulations with transient spiral arms, whereby
the arms come and go with time, and the time for gas to
accumulate into dense structures in the spiral arms may be
fundamentally limited. We have demonstrated that by refin-
ing adaptive grid simulations further than is usual, similar
arm density growth rates are achieved as with Lagrangian
codes. We note that a quasi-Lagrangian refinement scheme
could also be applied in the case where transient spiral arms
arise due to a live stellar disc, but we do not test this idea
in this work. We have also not examined how refinement
changes once self-gravity is included, but likewise leave this
to future studies.

To conclude, our key result is that caution is required
when justifying the use of four grid cells per Jeans length
as a resolution scheme with AMR (or static grid) simula-
tions. This condition is necessary but may not be sufficient
depending on the hydrodynamical solver. For the simula-
tions performed here, the Jeans length needs be resolved
by at least 16 grid cells to acheive a similar result to that
found with Lagrangian codes,. The authors are aware of only
one study in the field of isolated galaxy simulations where
the refinement criteria is set to a higher value, Petit et al.
(2015), wherein 32 cells are used (note the authors also ap-
plied a quasi-Lagrangian refinement scheme). We find some
dependence on the solver (in particular using a less diffu-
sive solver also produces better resolution), and in general
the criteria for the resolution may depend on the exact na-
ture of the code. But given that more diffusive set ups are
likely frequently used, we believe that this result is an im-
portant one. We find that increasing NJ appears to be the
most effective and simplest means of increasing the resolu-
tion in regions of interest in a galactic disc, in particular to
study processes such as spiral shocks and molecular cloud
formation.
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