2,239 research outputs found

    Progress toward the P\mathcal{P}, T\mathcal{T}-odd Faraday effect: Light absorption by atoms briefly interacting with a laser beam

    Full text link
    We investigate the process of photon absorption by atoms or molecules shortly interacting with a laser beam in the dipole approximation. Assuming that the interaction time τ\tau is much smaller than the lifetime of the corresponding excited state, we examine the absorption probability as a function of τ\tau. Besides, we incorporate Doppler broadening due to nonzero temperature of the atoms (molecules). It is demonstrated that in the case of a zero detuning and without Doppler broadening, the absorption probability is quadratic in τ\tau. Once Doppler broadening is taken into account or the laser beam is off from the resonant frequency, the absorption probability becomes linear in τ\tau. Our findings are expected to be important for experimental studies in optical cells or cavities where atoms or molecules traverse continuous laser beams. The experimental prospects of searching for the electric dipole moment (EDM) of the electron are discussed in detail

    Calculation of Constructions of Variable Thickness by Method of Steepest Descent

    Get PDF
    The technique of calculation of structural elements of variable thickness is discussed in the article. Such constructive elements are described by differential equations with variable coefficients, for the implementation of which it is necessary to have a reliable calculation method that allows obtaining a fairly accurate solution. The most effective method for calculating such structures is the steepest descent method, developed by L.V. Kantorovich. Within the framework of this article, the idea of the method is set forth in the example of solving problems of bending a beam and a plate of variable thickness. A sequence is given for calculating the design of a variable MSD thickness using the example of a statically indeterminate beam, where the bending equation for a beam of constant cross section was used as the initial approximation. Then this method was generalized to a more complex two-dimensional construction - a plate of variable thickness. The problem of constructing the initial approximation for solving a partial differential equation was solved. As an example, we considered a square plate in plan, hinged on the contour. The results of the calculation were compared with the results obtained by the finite difference method. In solving specific problems by the method of steepest descent, it was revealed that it differs from direct methods, such as, for example, Ritz-Timoshenko, Bubnov-Galerkin, which consists in the fact that successive approximations in solving problems are not obtained in a priori chosen form, but in the form , determined by the problem itself. In the MSD, the solution is corrected qualitatively in the course of implementing the method, and when solving the problem by variational methods, we choose the approximating function and thereby set the solution configuration. The use of the MSD makes it possible to obtain finite formulas for determining the stress-strain state of structures of variable thickness, which will allow them to quickly implement their variant design

    Noise diodes as a source of entropy for hardware random number generators

    Get PDF
    The purpose of this article is to describe the use of digital noise generators based on semiconductor noise diodes as part of systems for generating key numerical sequences used in cryptographic security methods. The classification of modern methods of cryptographic protection and the algorithms underlying them are considered. It is shown that ensuring high information entropy in systems for generating encryption keys is possible by using generators of truly random number sequences and cryptographically secure generators of pseudo-random number sequences. A number of disadvantages inherent in widely used sources of physical noise are described, namely: low spectral density of broadband noise, limited frequency range, nonlinearity of the noise spectrum, difficulties in technical implementation when using some methods, especially under conditions of extreme temperatures and exposure to special factors. It has been confirmed that the noise properties of semiconductor noise diodes depend on the composition and constancy of the defect-impurity structure, and defect engineering makes it possible to control their electrical parameters. The study of inhomogeneities and defects in noise diodes and the development on this basis of methods for controlling the level of structural defects made it possible to create technologies for their generation and annealing, and to improve a number of electrical and statistical properties of noise diodes

    Microstructured optical waveguide-based endoscopic probe coated with silica submicron particles

    Get PDF
    Microstructured optical waveguides (MOW) are of great interest for chemical and biological sensing. Due to the high overlap between a guiding light mode and an analyte filling of one or several fiber capillaries, such systems are able to provide strong sensitivity with respect to variations in the refractive index and the thickness of filling materials. Here, we introduce a novel type of functionalized MOWs whose capillaries are coated by a layer-by-layer (LBL) approach, enabling the alternate deposition of silica particles (SiO2) at different diameters—300 nm, 420 nm, and 900 nm—and layers of poly(diallyldimethylammonium chloride) (PDDA). We demonstrate up to three covering bilayers consisting of 300-nm silica particles. Modifications in the MOW transmission spectrum induced by coating are measured and analyzed. The proposed technique of MOW functionalization allows one to reach novel sensing capabilities, including an increase in the effective sensing area and the provision of a convenient scaffold for the attachment of long molecules such as protein

    Efimov physics beyond three particles

    Full text link
    Efimov physics originally refers to a system of three particles. Here we review recent theoretical progress seeking for manifestations of Efimov physics in systems composed of more than three particles. Clusters of more than three bosons are tied to each Efimov trimer, but no independent Efimov physics exists there beyond three bosons. The case of a few heavy fermions interacting with a lighter atom is also considered, where the mass ratio of the constituent particles plays a significant role. Following Efimov's study of the (2+1) system, the (3+1) system was shown to have its own critical mass ratio to become Efimovian. We show that the (4+1) system becomes Efimovian at a mass ratio which is smaller than its sub-systems thresholds, giving a pure five-body Efimov effect. The (5+1) and (6+1) systems are also discussed, and we show the absence of 6- and 7-body Efimov physics there

    Universal Angular Probability Distribution of Three Particles near Zero Energy Threshold

    Full text link
    We study bound states of a 3--particle system in R3\mathbb{R}^3 described by the Hamiltonian H(λn)=H0+v12+λn(v13+v23)H(\lambda_n) = H_0 + v_{12} + \lambda_n (v_{13} + v_{23}), where the particle pair {1,2}\{1,2\} has a zero energy resonance and no bound states, while other particle pairs have neither bound states nor zero energy resonances. It is assumed that for a converging sequence of coupling constants λnλcr\lambda_n \to \lambda_{cr} the Hamiltonian H(λn)H(\lambda_n) has a sequence of levels with negative energies EnE_n and wave functions ψn\psi_n, where the sequence ψn\psi_n totally spreads in the sense that limnζRψn(ζ)2dζ=0\lim_{n \to \infty}\int_{|\zeta| \leq R} |\psi_n (\zeta)|^2 d\zeta = 0 for all R>0R>0. We prove that for large nn the angular probability distribution of three particles determined by ψn\psi_n approaches the universal analytical expression, which does not depend on pair--interactions. The result has applications in Efimov physics and in the physics of halo nuclei

    Recommended reading list of early publications on atomic layer deposition-Outcome of the "Virtual Project on the History of ALD"

    Get PDF
    Atomic layer deposition (ALD), a gas-phase thin film deposition technique based on repeated, self-terminating gas-solid reactions, has become the method of choice in semiconductor manufacturing and many other technological areas for depositing thin conformal inorganic material layers for various applications. ALD has been discovered and developed independently, at least twice, under different names: atomic layer epitaxy (ALE) and molecular layering. ALE, dating back to 1974 in Finland, has been commonly known as the origin of ALD, while work done since the 1960s in the Soviet Union under the name "molecular layering" (and sometimes other names) has remained much less known. The virtual project on the history of ALD (VPHA) is a volunteer-based effort with open participation, set up to make the early days of ALD more transparent. In VPHA, started in July 2013, the target is to list, read and comment on all early ALD academic and patent literature up to 1986. VPHA has resulted in two essays and several presentations at international conferences. This paper, based on a poster presentation at the 16th International Conference on Atomic Layer Deposition in Dublin, Ireland, 2016, presents a recommended reading list of early ALD publications, created collectively by the VPHA participants through voting. The list contains 22 publications from Finland, Japan, Soviet Union, United Kingdom, and United States. Up to now, a balanced overview regarding the early history of ALD has been missing; the current list is an attempt to remedy this deficiency. (C) 2016 Author(s).Peer reviewe

    Preventive medicine of von Hippel-Lindau disease-associated pancreatic neuroendocrine tumors

    Get PDF
    Pancreatic neuroendocrine tumors (PanNETs) are rare in von Hippel-Lindau disease (VHL) but cause serious morbidity and mortality. Management guidelines for VHL-PanNETs continue to be based on limited evidence, and survival data to guide surgical management are lacking. We established the European-American-Asian-VHL-PanNET-Registry to assess data for risks for metastases, survival and long-term outcomes to provide best management recommendations. Of 2330 VHL patients, 273 had a total of 484 PanNETs. Median age at diagnosis of PanNET was 35 years (range 10-75). Fifty-five (20%) patients had metastatic PanNETs. Metastatic PanNETs were significantly larger (median size 5 vs 2\u2009cm; P\u20091.5\u2009cm in diameter were operated. Ten-year survival was significantly longer in operated vs non-operated patients, in particular for PanNETs <2.8\u2009cm vs 652.8\u2009cm (94% vs 85% by 10 years; P\u2009=\u20090.020; 80% vs 50% at 10 years; P\u2009=\u20090.030). This study demonstrates that patients with PanNET approaching the cut-off diameter of 2.8\u2009cm should be operated. Mutations in exon 3, especially of codons 161/167 are at enhanced risk for metastatic PanNETs. Survival is significantly longer in operated non-metastatic VHL-PanNETs

    Electric dipole moments and the search for new physics

    Get PDF
    Static electric dipole moments of nondegenerate systems probe mass scales for physics beyond the Standard Model well beyond those reached directly at high energy colliders. Discrimination between different physics models, however, requires complementary searches in atomic-molecular-and-optical, nuclear and particle physics. In this report, we discuss the current status and prospects in the near future for a compelling suite of such experiments, along with developments needed in the encompassing theoretical framework.Comment: Contribution to Snowmass 2021; updated with community edits and endorsement
    corecore