11 research outputs found

    The basic N-terminal domain of TRF2 limits recombination endonuclease action at human telomeres

    No full text
    The stability of mammalian telomeres depends upon TRF2, which prevents inappropriate repair and checkpoint activation. By using a plasmid integration assay in yeasts carrying humanized telomeres, we demonstrated that TRF2 possesses the intrinsic property to both stimulate initial homologous recombination events and to prevent their resolution via its basic N-terminal domain. In human cells, we further showed that this TRF2 domain prevents telomere shortening mediated by the resolvase-associated protein SLX4 as well as GEN1 and MUS81, 2 different types of endonucleases with resolvase activities. We propose that various types of resolvase activities are kept in check by the basic N-terminal domain of TRF2 in order to favor an accurate repair of the stalled forks that occur during telomere replication. © 2014 Landes Bioscience

    Kinetic analysis of the regulation of the Na+/H+ exchanger NHE-1 by osmotic shocks.

    No full text
    International audienceNHE-1 is a ubiquitous, mitogen-activatable, mammalian Na+/H+ exchanger that maintains cytosolic pH and regulates cell volume. We have previously shown that the kinetics of NHE-1 positive cooperative activation by intracellular acidifications fit best with a Monod-Wyman-Changeux mechanism, in which a dimeric NHE-1 oscillates between a low- and a high-affinity conformation for intracellular protons. The ratio between these two forms, the allosteric equilibrium constant L0, is in favor of the low-affinity form, making the system inactive at physiological pH. Conversely the high-affinity form is stabilized by intracellular protons, resulting in the observed positive cooperativity. The aim of the present study was to investigate the kinetics and mechanism of NHE-1 regulation by osmotic shocks. We show that they modify the L0 parameter (865 +/- 95 and 3757 +/- 328 for 500 and 100 mOsM, respectively, vs 1549 +/- 57 in isotonic conditions).This results in an activation of NHE-1 by hypertonic shocks and, conversely, in an inhibition by hypotonic media. Quantitatively, this modulation of L0 follows an exponential distribution relative to osmolarity, that is, additive to the activation of NHE-1 by intracellular signaling pathways. These effects can be mimicked by the asymmetric insertion of amphiphilic molecules into the lipid bilayer. Finally, site-directed mutagenesis of NHE-1 shows that neither its association with membrane PIP2 nor its interaction with cortical actin are required for mechanosensation. In conclusion, NHE-1 allosteric equilibrium and, thus, its cooperative response to intracellular acidifications is extremely sensitive to modification of its membrane environment

    The Telomeric Protein TRF2 Regulates Angiogenesis by Binding and Activating the PDGFRβ Promoter

    No full text
    Telomeric repeat binding factor 2 (TRF2), which plays a central role in telomere capping, is frequently increased in human tumors. We reveal here that TRF2 is expressed in the vasculature of most human cancer types, where it colocalizes with the Wilms’ tumor suppressor WT1. We further show that TRF2 is a transcriptional target of WT1 and is required for proliferation, migration, and tube formation of endothelial cells. These angiogenic effects of TRF2 are uncoupled from its function in telomere capping. Instead, TRF2 binds and transactivates the promoter of the angiogenic tyrosine kinase platelet-derived growth factor receptor β (PDGFRβ). These findings reveal an unexpected role of TRF2 in neoangiogenesis and delineate a distinct function of TRF2 as a transcriptional regulator

    Nongenomic effects of cisplatin:acute inhibition of mechanosensitive transporters and channels without actin remodeling

    No full text
    International audienceCisplatin is an antineoplastic drug, mostly documented to cause cell death through the formation of DNA adducts. In patients, it exhibits a range of short-term side effects that are unlikely to be related to its genomic action. As cisplatin has been shown to modify membrane properties in different cell systems, we investigated its effects on mechanosensitive ion transporters and channels. We show here that cisplatin is a noncompetitive inhibitor of the mechanosensitive Na(+)/H(+) exchanger NHE-1, with a half-inhibition concentration of 30 μg/mL associated with a decrease in V(max) and Hill coefficient. We also showed that it blocks the Cl(-) and K(+) mechanosensitive channels VSORC and TREK-1 at similar concentrations. In contrast, the nonmechanosensitive Cl(-) and K(+) channels CFTR and TASK-1 and the Na(+)-coupled glucose transport, which share functional features with VSORC, TREK-1, and NHE-1, respectively, were insensitive to cisplatin. We next investigated whether cisplatin action was due to a direct effect on membrane or to cortical actin remodeling that would affect mechanosensors. Using scanning electron microscopy, in vivo actin labeling, and atomic force microscopy, we did not observe any modification of the Young's modulus and actin cytoskeleton for up to 60 and 120 μg/mL cisplatin, whereas these concentrations modified membrane morphology. Our results reveal a novel mechanism for cisplatin, which affects mechanosensitive channels and transporters involved in cell fate programs and/or expressed in mechanosensitive organs in which cisplatin elicits strong secondary effects, such as the inner ear or the peripheral nervous system. These results might constitute a common denominator to previously unrelated effects of this drug

    TRF2-Mediated Control of Telomere DNA Topology as a Mechanism for Chromosome-End Protection.

    No full text
    International audienceThe shelterin proteins protect telomeres against activation of the DNA damage checkpoints and recombinational repair. We show here that a dimer of the shelterin subunit TRF2 wraps ∼ 90 bp of DNA through several lysine and arginine residues localized around its homodimerization domain. The expression of a wrapping-deficient TRF2 mutant, named Top-less, alters telomeric DNA topology, decreases the number of terminal loops (t-loops), and triggers the ATM checkpoint, while still protecting telomeres against non-homologous end joining (NHEJ). In Top-less cells, the protection against NHEJ is alleviated if the expression of the TRF2-interacting protein RAP1 is reduced. We conclude that a distinctive topological state of telomeric DNA, controlled by the TRF2-dependent DNA wrapping and linked to t-loop formation, inhibits both ATM activation and NHEJ. The presence of RAP1 at telomeres appears as a backup mechanism to prevent NHEJ when topology-mediated telomere protection is impaired

    Telomere DNA length regulation is influenced by seasonal temperature differences in short-lived but not in long-lived reef-building corals

    No full text
    Telomeres are environment-sensitive regulators of health and aging. Here,we present telomere DNA length analysis of two reef-building coral genera revealing that the long- and short-term water thermal regime is a key driver of between-colony variation across the Pacific Ocean. Notably, there are differences between the two studied genera. The telomere DNA lengths of the short-lived, more stress-sensitive Pocillopora spp. colonies were largely determined by seasonal temperature variation, whereas those of the long-lived, more stress-resistant Porites spp. colonies were insensitive to seasonal patterns, but rather influenced by past thermal anomalies. These results reveal marked differences in telomere DNA length regulation between two evolutionary distant coral genera exhibiting specific life-history traits. We propose that environmentally regulated mechanisms of telomere maintenance are linked to organismal performances, a matter of paramount importance considering the effects of climate change on health.ISSN:2041-172

    Telomere DNA length regulation is influenced by seasonal temperature differences in short-lived but not in long-lived reef-building corals

    No full text
    Abstract Telomeres are environment-sensitive regulators of health and aging. Here,we present telomere DNA length analysis of two reef-building coral genera revealing that the long- and short-term water thermal regime is a key driver of between-colony variation across the Pacific Ocean. Notably, there are differences between the two studied genera. The telomere DNA lengths of the short-lived, more stress-sensitive Pocillopora spp. colonies were largely determined by seasonal temperature variation, whereas those of the long-lived, more stress-resistant Porites spp. colonies were insensitive to seasonal patterns, but rather influenced by past thermal anomalies. These results reveal marked differences in telomere DNA length regulation between two evolutionary distant coral genera exhibiting specific life-history traits. We propose that environmentally regulated mechanisms of telomere maintenance are linked to organismal performances, a matter of paramount importance considering the effects of climate change on health
    corecore