50 research outputs found

    Acknowledging geodiversity in safeguarding biodiversity and human health

    Get PDF
    Our existence on Earth is founded on a vital nature, which supports human physical and mental health. However, nature is often depicted only through biodiversity, whereas geodiversity—the diversity of non-living nature—has so far been neglected. Geodiversity consists of assemblages, structures, and systems of geological, geomorphological, soil, and hydrological components that fundamentally underlie biodiversity. Biodiversity can support overall human health only with the foundation of geodiversity. Landscape characteristics, such as varying topography or bodies of water, promote aesthetic and sensory experiences and are also a product of geodiversity. In this Personal View, we introduce the concept of geodiversity as a driver for planetary health, describe its functions and services, and outline the intricate relationships between geodiversity, biodiversity, and human health. We also propose an agenda for acknowledging the importance of geodiversity in health-related research and decision making. Geodiversity is an emerging topic with untapped potential for ensuring ecosystem functionality and good living conditions for people in a time of changing environments

    Training Signaling Pathway Maps to Biochemical Data with Constrained Fuzzy Logic: Quantitative Analysis of Liver Cell Responses to Inflammatory Stimuli

    Get PDF
    Predictive understanding of cell signaling network operation based on general prior knowledge but consistent with empirical data in a specific environmental context is a current challenge in computational biology. Recent work has demonstrated that Boolean logic can be used to create context-specific network models by training proteomic pathway maps to dedicated biochemical data; however, the Boolean formalism is restricted to characterizing protein species as either fully active or inactive. To advance beyond this limitation, we propose a novel form of fuzzy logic sufficiently flexible to model quantitative data but also sufficiently simple to efficiently construct models by training pathway maps on dedicated experimental measurements. Our new approach, termed constrained fuzzy logic (cFL), converts a prior knowledge network (obtained from literature or interactome databases) into a computable model that describes graded values of protein activation across multiple pathways. We train a cFL-converted network to experimental data describing hepatocytic protein activation by inflammatory cytokines and demonstrate the application of the resultant trained models for three important purposes: (a) generating experimentally testable biological hypotheses concerning pathway crosstalk, (b) establishing capability for quantitative prediction of protein activity, and (c) prediction and understanding of the cytokine release phenotypic response. Our methodology systematically and quantitatively trains a protein pathway map summarizing curated literature to context-specific biochemical data. This process generates a computable model yielding successful prediction of new test data and offering biological insight into complex datasets that are difficult to fully analyze by intuition alone.National Institutes of Health (U.S.) (NIH grant P50-GM68762)National Institutes of Health (U.S.) (Grant U54-CA112967)United States. Dept. of Defense (Institute for Collaborative Biotechnologies

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely

    Status and trends of physical activity surveillance, policy, and research in 164 countries: Findings from the Global Observatory for Physical Activity—GoPA! 2015 and 2020 Surveys

    Get PDF
    BACKGROUND: Physical activity (PA) surveillance, policy, and research efforts need to be periodically appraised to gain insight into national and global capacities for PA promotion. The aim of this paper was to assess the status and trends in PA surveillance, policy, and research in 164 countries. METHODS: We used data from the Global Observatory for Physical Activity (GoPA!) 2015 and 2020 surveys. Comprehensive searches were performed for each country to determine the level of development of their PA surveillance, policy, and research, and the findings were verified by the GoPA! Country Contacts. Trends were analyzed based on the data available for both survey years. RESULTS: The global 5-year progress in all 3 indicators was modest, with most countries either improving or staying at the same level. PA surveillance, policy, and research improved or remained at a high level in 48.1%, 40.6%, and 42.1% of the countries, respectively. PA surveillance, policy, and research scores decreased or remained at a low level in 8.3%, 15.8%, and 28.6% of the countries, respectively. The highest capacity for PA promotion was found in Europe, the lowest in Africa and low- and lower-middle-income countries. Although a large percentage of the world's population benefit from at least some PA policy, surveillance, and research efforts in their countries, 49.6 million people are without PA surveillance, 629.4 million people are without PA policy, and 108.7 million live in countries without any PA research output. A total of 6.3 billion people or 88.2% of the world's population live in countries where PA promotion capacity should be significantly improved. CONCLUSION: Despite PA is essential for health, there are large inequalities between countries and world regions in their capacity to promote PA. Coordinated efforts are needed to reduce the inequalities and improve the global capacity for PA promotion

    Neighbourhood built environment associations with body size in adults:mediating effects of activity and sedentariness in a cross-sectional study of New Zealand adults

    Get PDF
    Background: The aim of this study was to determine the associations between body size and built environment walkability variables, as well as the mediating role of physical activity and sedentary behaviours with body size. Methods: Objective environment, body size (body mass index (BMI), waist circumference (WC)), and sedentary time and physical activity data were collected from a random selection of 2033 adults aged 20-65 years living in 48 neighbourhoods across four New Zealand cities. Multilevel regression models were calculated for each comparison between body size outcome and built environment exposure. Results and Discussion: Street connectivity and neighborhood destination accessibility were significant predictors of body size (1 SDchange predicted a 1.27 to 1.41 % reduction in BMI and a 1.76 to 2.29 % reduction in WC). Significantrelationships were also observed for streetscape (1 SD change predicted a 1.33 % reduction in BMI) anddwelling density (1 SD change predicted a 1.97 % reduction in BMI). Mediation analyses revealed asignificant mediating effect of physical activity on the relationships between body size and street connectivity and neighbourhood destination accessibility (explaining between 10.4 and 14.6 % of the total effect). No significant mediating effect of sedentary behaviour was found. Findings from this cross-sectional study of a random selection of New Zealand adults are consistent with international research. Findings are limited to individual environment features only; conclusions cannot be drawn about the cumulative and combined effect of individual features on outcomes. Conclusions: Built environment features were associated with body size in the expected directions. Objectively-assessed physical activity mediated observed built environment-body size relationships

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level
    corecore