80 research outputs found

    The Case of the Missing Music: An Outreach Activity Sparks Interest in Science and Density

    Get PDF
    From Scooby Doo and Nancy Drew to the countless other detectives that fill children’s bookshelves and television programs, it is clear that children are fascinated with solving crimes. As a result, a chemistry professor who performs outreach activities at local elementary schools exploited this interest in mysteries as a method to spark curiosity in science. This was accomplished through the development of an outreach activity in which students solve a mystery using density and fingerprint analysis

    The Design and Synthesis of Novel Goniothalamin Analogues

    Get PDF
    Every two minues a woman in the United States is diagnosed with breast cancer. In recent years, one method to identify potential chemotherapeutic agents has been the mass screening of natural products of cytotoxicity. One compound discovered in this manner was goniothalamin. Gonothalamin was isolated from the dried stem bark of the plant Goniothalamus sesuipedalis and exhibits cell specific anticancer activity against breast cancer. Goniothalamin has been extensively studies and a large number of synthetic analogues have been prepared in an attempt to determine the structural features necessary for bioactivity. These studies have focused primarily on the manipulation of goniothalmin\u27s styryl substituent. The focus of this research is on the lactone core of goniothalamin. Analogues have been prepared that replace the lactone ring with lactam. It is anticipated that alteration of the lactam nitrogen substituent will potentially lead to analogues with better bioavailability and reactivity than the natural product

    Genetic evidence for a pathogenic role for the vitamin D3 metabolizing enzyme CYP24A1 in multiple sclerosis

    Get PDF
    Background: Multiple sclerosis (MS) is a common disease of the central nervous system and a major cause of disability amongst young adults. Genome-wide association studies have identified many novel susceptibility loci including rs2248359. We hypothesized that genotypes of this locus could increase the risk of MS by regulating expression of neighboring gene, CYP24A1 which encodes the enzyme responsible for initiating degradation of 1,25-dihydroxyvitamin D3. Methods: We investigated this hypothesis using paired gene expression and genotyping data from three independent datasets of neurologically healthy adults of European descent. The UK Brain Expression Consortium (UKBEC) consists of post-mortem samples across 10 brain regions originating from 134 individuals (1231 samples total). The North American Brain Expression Consortium (NABEC) consists of cerebellum and frontal cortex samples from 304 individuals (605 samples total). The brain dataset from Heinzen and colleagues consists of prefrontal cortex samples from 93 individuals. Additionally, we used gene network analysis to analyze UKBEC expression data to understand CYP24A1 function in human brain. Findings: The risk allele, rs2248359-C, is strongly associated with increased expression of CYP24A1 in frontal cortex (p-value=1.45×10−13), but not white matter. This association was replicated using data from NABEC (p-value=7.2×10−6) and Heinzen and colleagues (p-value=1.2×10−4). Network analysis shows a significant enrichment of terms related to immune response in eight out of the 10 brain regions. Interpretation: The known MS risk allele rs2248359-C increases CYP24A1 expression in human brain providing a genetic link between MS and vitamin D metabolism, and predicting that the physiologically active form of vitamin D3 is protective. Vitamin D3's involvement in MS may relate to its immunomodulatory functions in human brain. Finding: Medical Research Council UK; King Faisal Specialist Hospital and Research Centre, Saudi Arabia; Intramural Research Program of the National Institute on Aging, National Institutes of Health, USA

    Original Article

    Get PDF
    The present paper deals with an investigation on the changes appearing in the mucous membrane of the nose (physiologic atrophy) in normal persons of different age groups, as contrasted with a wasting of the mucous mambrane of the nose in cases of atrophic rhinitis. The investigation has been performed for the purpose of contributing to the studies of the pathology of atrophic rhinitis. 1. Pathologic changes of a considerable degree were. observed in the epithelium in quite a large section of infants and children where it had been considered normal as a results of macroscopic examinations. 2. Metaplasia of the epithelial cells developing in the mucous membrane in the forepart of the respiratory region seems to occur as a result of the stimulus applied from without. The phenomenon was marked in the front and along the lower edge of the inferior turbinal, showing a tendency to increase in magnitude as the age advance. It did not, however, spread over a wide area, nor was there any marked development of cornification. An increase in mucus secretion, as well as in the number of goblet cells, was noticed in the epithelium as the age advance. Mucous degeneration gradually set in at the end of forties, becoming marked in the sixties. 4. In the basal membrane, the hyaline layer, which is its secondary form, grew in size with age, and a substance which stains with Hale\u27s stain was detected in it. This substance seems to have an important share in the mucus secreting function of the epithelium. 5. It seems that the epithelium of the mucous membrane of the upper respiratory tract continues to function even in considerably advanced ages. 6. The lymphoid tissue situated underneath the epithelium attained the largest quantity in persons about 20 years old; it began to diminish and grow less thick in persons over 40. The presence of the elastic fiber was noticed in the subepithelial layer in all age groups, though the number of persons with this phenomenon was small.7. The glands wers under-developed in children of about 10; they grew rapidly after that age until about 40 when they began to show a tendency to atrophy. 8. It seems that the periglandular lymphocytes, which infiltrate without bringing about the disintegration of the glands, take charge of the metabolism of the glands. A large number of them were found in infancy but they showed a marked decrease in number in persons over about 40. It would seem that, in highly advanced ages, non-inflammatory disintegration of the glands could possibly occur as a result of the infiltration of the lymphoid tissue. 9. The formation of the oncocyte, an unusual cell of the epithelium of the gland which characterizes the old age, was noticed in 7 cases. 10. The blood vessels manifested changes of a high degree in persons of advanced ages: they revealed evidences of functional disturbance of a high degree when stained by the stains of H. E, Weigert, PAS and Hale. This would show the measure of the influence that has been exerted on the function of the mucous membrane. 11. Corpora cavernosa was under-developed in infancy but became well-developed in persons of about 20; a decrease in the number of bodies and a diminution in size of the inner lumen became marked in persons over 40, becoming more marked in persons over 50

    Integration of GWAS SNPs and tissue specific expression profiling reveal discrete eQTLs for human traits in blood and brain

    Get PDF
    Our knowledge of the transcriptome has become much more complex since the days of the central dogma of molecular biology. We now know that splicing takes place to create potentially thousands of isoforms from a single gene, and we know that RNA does not always faithfully recapitulate DNA if RNA editing occurs. Collectively, these observations show that the transcriptome is amazingly rich with intricate regulatory mechanisms for overall gene expression, splicing, and RNA editing. Genetic variability can play a role in controlling gene expression, which can be identified by examining expression quantitative trait loci (eQTLs). eQTLs are genomic regions where genetic variants, including single nucleotide polymorphisms (SNPs) show a statistical association with expression of mRNA transcripts. In humans, many SNPs are also associated with disease, and have been identified using genome wide association studies (GWAS) but the biological effects of those SNPs are usually not known. If SNPs found in GWAS are also found in eQTLs, then one could hypothesize that expression levels may contribute to disease risk. Performing eQTL analysis with GWAS SNPs in both blood and brain, specifically the frontal cortex and the cerebellum, we found both shared and tissue unique eQTLS. The identification of tissue-unique eQTLs supports the argument that choice of tissue type is important in eQTL studies (Paper I). Aging is a complex process with the mechanisms underlying aging still being poorly defined. There is evidence that the transcriptome changes with age, and hence we used the brain dataset from our first paper as a discovery set, with an additional replication dataset, to investigate any aging-gene expression associations. We found evidence that many genes were associated with aging. We further found that there were more statically significant expression changes in the frontal cortex versus the cerebellum, indicating that brain regions may age at different rates. As the brain is a heterogeneous tissue including both neurons and non-neuronal cells, we used LCM to capture Purkinje cells as a representative neuronal type and repeated the age analysis. Looking at the discovery, replication and Purkinje cell datasets we found five genes with strong, replicated evidence of age-expression associations (Paper II). Being able to capture and quantify the depth of the transcriptome has been a lengthy process starting with methods that could only measure a single gene to genome-wide techniques such as microarray. A recently developed technology, RNA-Seq, shows promise in its ability to capture expression, splicing, and editing and with its broad dynamic range quantification is accurate and reliable. RNA-Seq is, however, data intensive and a great deal of computational expertise is required to fully utilize the strengths of this method. We aimed to create a small, well-controlled, experiment in order to test the performance of this relatively new technology in the brain. We chose embryonic versus adult cerebral cortex, as mice are genetically homogenous and there are many known differences in gene expression related to brain development that we could use as benchmarks for analysis testing. We found a large number of differences in total gene expression between embryonic and adult brain. Rigorous technical and biological validation illustrated the accuracy and dynamic range of RNA-Seq. We were also able to interrogate differences in exon usage in the same dataset. Finally we were able to identify and quantify both well-known and novel A-to-I edit sites. Overall this project helped us develop the tools needed to build usable pipelines for RNA-Seq data processing (Paper III). Our studies in the developing brain (Paper III) illustrated that RNA-Seq was a useful unbiased method for investigating RNA editing. To extend this further, we utilized a genetically modified mouse model to study the transcriptomic role of the RNA editing enzyme ADAR2. We found that ADAR2 was important for editing of the coding region of mRNA as a large proportion of RNA editing sites in coding regions had a statistically significant decrease in editing percentages in Adar2 -/-Gria2 R/R mice versus controls. However, despite indications in the literature that ADAR2 may also be involved in splicing and expression regulatory machinery we found no changes in gene expression or exon utilization in Adar2 -/-Gria2 R/R mice as compared to their littermate controls (Paper IV). In our final study, based on the methods developed in Papers III and IV, we revisited the idea of age related gene expression associations from Paper II. We used a subset of human frontal cortices for RNA sequencing. Interestingly we found more gene expression changes with aging compared to the previous data using microarrays in Paper II. When the significant gene lists were analysed for gene ontology enrichment, we found that there was a large number of downregulated genes involved in synaptic function while those that were upregulated had enrichment in immune function. This dataset illustrates that the aging brain may be predisposed to the processes found in neurodegenerative diseases (Paper V)

    Benigne perivaginale Raumforderungen: Ätiologie, Diagnostik und therapeutisches Management

    Get PDF
    Einleitung: Benigne perivaginale Raumforderungen (PVRF) sind relativ selten. Treten sie auf, stellen sie in vielen Fällen eine diagnostische und therapeutische Herausforderung dar. Vielfältige, sich oftmals überlappende Symptome, sowie ein mangelndes Bewusstsein für diese seltenen Entitäten tragen maßgeblich dazu bei. Eine inkorrekte oder verspätete Diagnose kann mit Inkontinenz, Schmerzen, Rezidiven und weiteren Komplikationen einhergehen und den Leidensweg für die betroffenen Patientinnen unnötig verlängern. In seltenen Fällen kann es zu einer malignen Transformation kommen. Ziel dieser Studie ist es, ein Bewusstsein für diese Entitäten zu schaffen sowie eine akkurate Diagnostik und Versorgung aufzuzeigen. Material und Methoden: Aus den OP-Büchern der Universitätsfrauenklinik Tübingen wurden über einen Zeitraum von fünf Jahren die Art und die Anzahl der durchgeführten urogynäkologischen Eingriffe im Allgemeinen, sowie die aufgrund einer benignen PVRF erfolgten Eingriffe im Speziellen erhoben. Aus den Krankenunterlagen wurden Diagnostik, Therapie, Histologie und postoperatives Management zusammengefasst und analysiert. Vaginale Endometriosemanifestationen fanden keine Berücksichtigung. Ergebnisse: Im Zeitraum 2011-2015 wurden an unserer Klinik insgesamt 4157 Frauen einer urogynäkologischen Operation unterzogen, 65 (1,6 %) davon aufgrund benigner PVRF. Die verschiedenen Entitäten variierten erheblich in ihrer Größe, Konfiguration und Komplexität. Die größte PVRF betrug 10 cm. PVRF traten einzeln oder multipel auf. Sie waren asymptomatisch (21,2 %) oder gingen mit einem breiten Spektrum an Symptomen einher (78,8 %). Anamnese, klinische Untersuchung, Becken-boden-Sonographie, Urethrozystoskopie und MRT waren für die Diagnostik entscheidend. In allen 65 Fällen wurde die PVRF exzidiert. In einem weiteren Fall bildete sich ein Urethradivertikel vollständig unter konservativer Therapie zurück. Fazit: Anamnese, klinische Untersuchung, Beckenboden-Sonographie, Urethrozystoskopie und MRT sind essentiell für die Diagnostik benigner PVRF. Im Falle einer Infektion sollte grundsätzlich zunächst eine konservative Therapie erfolgen. Eine komplette Exzision ist bei einem chirurgischen Vorgehen die Therapiemethode der Wahl. Das Bewusstsein für und die Vertrautheit mit den verschiedenen Entitäten ist von herausragender Bedeutung für eine korrekte Diagnose und Versorgung. Als Sekundärpathologie muss auf Divertikelsteine sowie auf eine maligne Entartung geachtet werden

    Correction: Pathogenic LRRK2 Mutations Do Not Alter Gene Expression in Cell Model Systems or Human Brain Tissue.

    Get PDF
    Point mutations in LRRK2 cause autosomal dominant Parkinson's disease. Despite extensive efforts to determine the mechanism of cell death in patients with LRRK2 mutations, the aetiology of LRRK2 PD is not well understood. To examine possible alterations in gene expression linked to the presence of LRRK2 mutations, we carried out a case versus control analysis of global gene expression in three systems: fibroblasts isolated from LRRK2 mutation carriers and healthy, non-mutation carrying controls; brain tissue from G2019S mutation carriers and controls; and HEK293 inducible LRRK2 wild type and mutant cell lines. No significant alteration in gene expression was found in these systems following correction for multiple testing. These data suggest that any alterations in basal gene expression in fibroblasts or cell lines containing mutations in LRRK2 are likely to be quantitatively small. This work suggests that LRRK2 is unlikely to play a direct role in modulation of gene expression, although it remains possible that this protein can influence mRNA expression under pathogenic cicumstances

    Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy

    Get PDF
    CurePSP Foundation, the Peebler PSP Research Foundation, and National Institutes on Health (NIH) grants R37 AG 11762, R01 PAS-03-092, P50 NS72187, P01 AG17216 [National Institute on Aging(NIA)/NIH], MH057881 and MH077930 [National Institute of Mental Health (NIMH)]. Work was also supported in part by the NIA Intramural Research Program, the German National Genome Research Network (01GS08136-4) and the Deutsche Forschungsgemeinschaft (HO 2402/6-1), Prinses Beatrix Fonds (JCvS, 01–0128), the Reta Lila Weston Trust and the UK Medical Research Council (RdS: G0501560). The Newcastle Brain Tissue Resource provided tissue and is funded in part by a grant from the UK Medical Research Council (G0400074), by the Newcastle NIHR Biomedical Research Centre in Ageing and Age Related Diseases to the Newcastle upon Tyne Hospitals NHS Foundation Trust, and by a grant from the Alzheimer’s Society and Alzheimer’s Research Trust as part of the Brains for Dementia Resarch Project. We acknowledge the contribution of many tissue samples from the Harvard Brain Tissue Resource Center. We also acknowledge the 'Human Genetic Bank of Patients affected by Parkinson Disease and parkinsonism' (http://www.parkinson.it/dnabank.html) of the Telethon Genetic Biobank Network, supported by TELETHON Italy (project n. GTB07001) and by Fondazione Grigioni per il Morbo di Parkinson. The University of Toronto sample collection was supported by grants from Wellcome Trust, Howard Hughes Medical Institute, and the Canadian Institute of Health Research. Brain-Net-Germany is supported by BMBF (01GI0505). RdS, AJL and JAH are funded by the Reta Lila Weston Trust and the PSP (Europe) Association. RdS is funded by the UK Medical Research Council (Grant G0501560) and Cure PSP+. ZKW is partially supported by the NIH/NINDS 1RC2NS070276, NS057567, P50NS072187, Mayo Clinic Florida (MCF)Research Committee CR programs (MCF #90052030 and MCF #90052030), and the gift from Carl Edward Bolch, Jr., and Susan Bass Bolch (MCF #90052031/PAU #90052). The Mayo Clinic College of Medicine would like to acknowledge Matt Baker, Richard Crook, Mariely DeJesus-Hernandez and Nicola Rutherford for their preparation of samples. PP was supported by a grant from the Government of Navarra ("Ayudas para la Realización de Proyectos de Investigación" 2006–2007) and acknowledges the "Iberian Atypical Parkinsonism Study Group Researchers", i.e. Maria A. Pastor, Maria R. Luquin, Mario Riverol, Jose A. Obeso and Maria C Rodriguez-Oroz (Department of Neurology, Clínica Universitaria de Navarra, University of Navarra, Pamplona, Spain), Marta Blazquez (Neurology Department, Hospital Universitario Central de Asturias, Oviedo, Spain), Adolfo Lopez de Munain, Begoña Indakoetxea, Javier Olaskoaga, Javier Ruiz, José Félix Martí Massó (Servicio de Neurología, Hospital Donostia, San Sebastián, Spain), Victoria Alvarez (Genetics Department, Hospital Universitario Central de Asturias, Oviedo, Spain), Teresa Tuñon (Banco de Tejidos Neurologicos, CIBERNED, Hospital de Navarra, Navarra, Spain), Fermin Moreno (Servicio de Neurología, Hospital Ntra. Sra. de la Antigua, Zumarraga, Gipuzkoa, Spain), Ainhoa Alzualde (Neurogenétics Department, Hospital Donostia, San Sebastián, Spain)

    Abundant Quantitative Trait Loci Exist for DNA Methylation and Gene Expression in Human Brain

    Get PDF
    A fundamental challenge in the post-genome era is to understand and annotate the consequences of genetic variation, particularly within the context of human tissues. We present a set of integrated experiments that investigate the effects of common genetic variability on DNA methylation and mRNA expression in four human brain regions each from 150 individuals (600 samples total). We find an abundance of genetic cis regulation of mRNA expression and show for the first time abundant quantitative trait loci for DNA CpG methylation across the genome. We show peak enrichment for cis expression QTLs to be approximately 68,000 bp away from individual transcription start sites; however, the peak enrichment for cis CpG methylation QTLs is located much closer, only 45 bp from the CpG site in question. We observe that the largest magnitude quantitative trait loci occur across distinct brain tissues. Our analyses reveal that CpG methylation quantitative trait loci are more likely to occur for CpG sites outside of islands. Lastly, we show that while we can observe individual QTLs that appear to affect both the level of a transcript and a physically close CpG methylation site, these are quite rare. We believe these data, which we have made publicly available, will provide a critical step toward understanding the biological effects of genetic variation
    corecore