32 research outputs found

    Vegetable oil hybrid films cross-linked at the air-water interface: formation kinetics and physical characterization

    Full text link
    Vegetable oil based hybrid films were developed thanks to a novel solvent- and heating- free method at the air-water interface using silylated castor oil cross-linked via a sol-gel reaction. To understand the mechanism of the hybrid film formation, the reaction kinetics was studied in detail by using complementary techniques: rheology, thermogravimetric analysis, and infrared spectroscopy. The mechanical properties of the final films were investigated by nano-indentation, whereas their structure was studied using a combination of wide-angle X-ray scattering, electron diffraction, and atomic force microscopy. We found that solid and transparent films form in 24 hours and, by changing the silica precursor to castor oil ratio, their mechanical properties are tunable in the MPa-range by about a factor of twenty. In addition to that, a possible optimization of the cross-linking reaction with different catalysts was explored and finally, cytotoxicity tests were performed on fibroblasts proving the absence of film toxicity. The results of this work pave the way to a straightforward synthesis of castor-oil films with tunable mechanical properties: hybrid films cross-linked at the air-water interface combine an easy and cheap spreading protocol with the features of their thermal history optimized for possible future micro/nano drug loading, thus representing excellent candidates for the replacement of non-environment friendly petroleum-based materials

    Rejuvenating the structure and rheological properties of silica nanocomposites based on natural rubber

    Full text link
    The antagonistic effect of processing and thermal annealing on both the filler structure and the polymer matrix is explored in polymer nanocomposites based on natural rubber with precipitated silica incorporated by coagulation from aqueous suspension followed by roll-milling. Their structure and linear and non-linear rheology have been studied, with a particular emphasis on the effect of high temperature thermal treatment and the number of milling passes. Small-angle X-ray scattering intensities show that the silica is organized in small, unbreakable aggregates containing ca. 50 primary nanoparticles, which are reorganized on a larger scale in filler networks percolating at the highest silica contents. As expected, the filler network structure is found to be sensitive to milling, more milling inducing rupture, as evidenced by the decreasing Payne effect. After thermal treatment, the nanocomposite structure is found to be rejuvenated, erasing the effect of the previous milling on the low-strain modulus. In parallel, the dynamics of the samples described by the rheology or the calorimetric glass-transition temperature remain unchanged, whereas the natural latex polymer network structure is modified by milling towards a more fluid-like rheology, and cannot be recovered

    Rhinitis associated with asthma is distinct from rhinitis alone: TARIA‐MeDALL hypothesis

    Get PDF
    Asthma, rhinitis, and atopic dermatitis (AD) are interrelated clinical phenotypes that partly overlap in the human interactome. The concept of “one-airway-one-disease,” coined over 20 years ago, is a simplistic approach of the links between upper- and lower-airway allergic diseases. With new data, it is time to reassess the concept. This article reviews (i) the clinical observations that led to Allergic Rhinitis and its Impact on Asthma (ARIA), (ii) new insights into polysensitization and multimorbidity, (iii) advances in mHealth for novel phenotype definitions, (iv) confirmation in canonical epidemiologic studies, (v) genomic findings, (vi) treatment approaches, and (vii) novel concepts on the onset of rhinitis and multimorbidity. One recent concept, bringing together upper- and lower-airway allergic diseases with skin, gut, and neuropsychiatric multimorbidities, is the “Epithelial Barrier Hypothesis.” This review determined that the “one-airway-one-disease” concept does not always hold true and that several phenotypes of disease can be defined. These phenotypes include an extreme “allergic” (asthma) phenotype combining asthma, rhinitis, and conjunctivitis.info:eu-repo/semantics/publishedVersio

    Cabbage and fermented vegetables : From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19

    Get PDF
    Large differences in COVID-19 death rates exist between countries and between regions of the same country. Some very low death rate countries such as Eastern Asia, Central Europe, or the Balkans have a common feature of eating large quantities of fermented foods. Although biases exist when examining ecological studies, fermented vegetables or cabbage have been associated with low death rates in European countries. SARS-CoV-2 binds to its receptor, the angiotensin-converting enzyme 2 (ACE2). As a result of SARS-CoV-2 binding, ACE2 downregulation enhances the angiotensin II receptor type 1 (AT(1)R) axis associated with oxidative stress. This leads to insulin resistance as well as lung and endothelial damage, two severe outcomes of COVID-19. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the most potent antioxidant in humans and can block in particular the AT(1)R axis. Cabbage contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented vegetables contain many lactobacilli, which are also potent Nrf2 activators. Three examples are: kimchi in Korea, westernized foods, and the slum paradox. It is proposed that fermented cabbage is a proof-of-concept of dietary manipulations that may enhance Nrf2-associated antioxidant effects, helpful in mitigating COVID-19 severity.Peer reviewe

    Nrf2-interacting nutrients and COVID-19 : time for research to develop adaptation strategies

    Get PDF
    There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPAR gamma:Peroxisome proliferator-activated receptor, NF kappa B: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2 alpha:Elongation initiation factor 2 alpha). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT(1)R axis (AT(1)R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Phase transitions in polymorphic materials probed using space-resolved diffusing wave spectroscopy

    No full text
    We use space-resolved dynamic light scattering in the highly multiple scattering regime (Photon Correlation Imaging Diffusing Wave Spectroscopy, PCI-DWS) to investigate temperature-induced phase transitions in polymorphic materials. We study paraffin wax as a simple model system and chocolate, a prototypical example of fat-based products exhibiting complex, history-dependent phase transitions. We find that microscopic dynamics measured using PCI-DWS show remarkable, non-monotonic behavior upon heating: they transiently accelerate when crossing phase transition and slow down above the transition temperature. Sub-micron resolution measurements of the local drift of the sample surface reveal that the speed-up of the dynamics is due to the strain field induced by the change in density at transition temperature. The transition temperatures obtained from PCI-DWS are found to be in excellent agreement with those inferred from complementary differential scanning calorimetry and X-ray scattering experiments, thereby validating PCI-DWS as a new, powerful tool for the characterization of phase transitions in complex soft matter. Finally, we demonstrate the unique possibilities afforded by space-resolved DWS by investigating the spatially heterogeneous response of poorly manufactured or composite chocolate samples

    Toward Organization of Cyano-Bridged Coordination Polymer Nanoparticles within an Ionic Liquid Crystal

    No full text
    International audienceSize controlled cyano-bridged coordination polymer nanoparticles Mn1.5[Cr(CN)6] have been synthesized and organized at the nanolevel by using the room temperature ionic liquid crystal (ILC) C12-MIMBF4. The as-obtained material was studied by transmission electron microscopy (TEM), differential scanning calorimetry (DSC), optical microscopy, and X-ray diffraction. These analyses reveal the presence of a long-range organization of cyano-bridged nanoparticles at the nanoscale level within the ILC phase. The magnetic study of these nanoparticles reveals an appearance of a nanocluster-glass-like regime caused by magnetostatic interactions between neighboring nanoparticles. The properties of these organized nanoparticles have been compared with the properties of nanoparticles of the same composition and stoichiometry obtained and randomly dispersed into the isotropic IL C10-MIMBF4

    Impact of the processing temperature on the crystallization behavior and mechanical properties of poly[R-3-hydroxybutyrate-co-(R-3-hydroxyvalerate)]

    No full text
    International audiencePoly[R-3-hydroxybutyrate-co-(R-3-hydroxyvalerate)] (PHBVs) are promising biopolymers, which could substitute petro-based plastics for packaging applications. To anticipate the behavior of PHBVs when transformed using conventional thermo-mechanical shaping processes, it is needed to better understand the effect of processing temperature on their crystallization behavior and final properties. The objectives of the present work were thus (1) to better understand the influence of the processing temperature on the PHBV macromolecular and crystalline structures, depending on its HV content, and (2) to define a processing window guaranteeing optimized mechanical properties of PHBV films. An innovative experimental strategy was proposed, enabling the study of melting and crystallization events, crystalline structure changes, and evolution of mechanical properties of PHBV according to processing temperature, using identical thermal cycles. A comprehensive dynamic monitoring of the studied PHBVs was achieved by coupling differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), step scan DSC (SDSC), observations of isothermal crystallization under polarized optical microscopy (POM), thermo-regulated wide angle X-ray analysis (WAXS), Nuclear Magnetic Resonance (NRM), and finally mechanical tests on PHBV films. The combination of these experiments revealed how inappropriate processing temperatures can result in irreversible changes in PHBVs’ macromolecular and crystalline structures, thermal behavior and mechanical performances. When increasing the HV content of the copolymer, adjusting the processing conditions according to these results revealed to be critical to match the functional properties targeted for a specific use

    Lyotropic behavior of polyelectrolyte complex micelles

    No full text
    International audienceUpon pH stimulus, double hydrophilic block copolymers form polyion complexes (PIC) in the micellar form. We used PIC micelles as ecofriendly templates for the synthesis of ordered mesoporous materials. The porosity of the final material is revealed by simple inversion of the pH stimulus. Various mesoporous silica materials have been obtained from cubic to lamellar.The control over the structure of the final material is expected to relate to the lyotropic behavior just as observed when micelles of amphiphilic molecules are used as template. However such lyotropic behavior has never been reported for PIC micelles. Moreover the same PIC leads to different structured silica materials depending on the physico-chemical conditions.Using X-rays and light scattering, optical microscopy and osmometry, we establish the equation of state (osmotic pressure vs volume fraction) of a PEO-b-PAA/oligoamine electrostatic complex. Its lyotropic behavior is characterized by a transition of shape at 0.16 w/w and a transition to a lamellar phase at 0.30w/w. The water content of the core of the micelles is addressed from the complete phase diagram of the polyelectrolyte complex in its coacervate form and explains why a single complex leads to porous material of different structure
    corecore