73 research outputs found

    Sporopollenin, the least known yet toughest natural biopolymer

    Get PDF
    © 2015 Mackenzie, Boa, Diego-Taboada, Atkin and Sathyapalan. Sporopollenin is highly cross-linked polymer composed of carbon, hydrogen, and oxygen that is extraordinarily stable and has been found chemically intact in sedimentary rocks some 500 million years old. It makes up the outer shell (exine) of plant spores and pollen and when extracted it is in the form of an empty exine or microcapsule. The exines resemble the spores and pollen from which they are extracted, in size and morphology. Also, from any one plant such characteristics are incredible uniform. The exines can be used as microcapsules or simply as micron-sized particles due to the variety of functional groups on their surfaces. The loading of a material into the chamber of the exine microcapsule is via multi-directional nano-diameter sized channels. The exines can be filled with a variety of polar and non-polar materials. Enzymes can be encapsulated within the shells and still remain active. In vivo studies in humans have shown that an encapsulated active substance can have a substantially increased bioavailability than if it is taken alone. The sporopollenin exine surface possesses phenolic, alkane, alkene, ketone, lactone, and carboxylic acid groups. Therefore, it can be derivatized in a number of ways, which has given rise to applications in areas, such as solid supported for peptide synthesis, catalysis, and ion-exchange chromatography. Also, the presence of the phenolic groups on sporopollenin endows it with antioxidant activity

    Sulfonated sporopollenin as an efficient and recyclable heterogeneous catalyst for dehydration of D-xylose and xylan into furfural

    Get PDF
    The natural acidity of sporopollenin, the biopolymer coating the outer walls of pollen grains, was enhanced by the sulfonation of its surface. Modified sporopollenin displaying sulfonic acid groups has been prepared, characterized by elemental analysis, SEM, EDX, FTIR and XPS and tested as a heterogeneous catalyst in the dehydration of D-xylose and xylan to produce furfural. The optimal reaction conditions involve 10 wt % of sulfonated sporopollenin in the presence of 1.5 mmol of NaCl in a biphasic water-CPME system. When heated at 190 °C, the reaction affords furfural in a yield of 69% after 40 min under microwave irradiation. The time dependence of the dehydration and influence of temperature, pentose loading and positive effect of chloride ions on the reaction rate are reported. It was found that the catalytic system, recharged with the pentose and solvent, could be recycled ten times without loss of performance. The transformation of xylan into furfural at 190 °C for 50 min gave furfural in a yield of 37%

    How does iron interact with sporopollenin exine capsules? An X-ray absorption study including microfocus XANES and XRF imaging

    Get PDF
    Sporopollenin exine capsules (SECs) derived from plant spores and pollen grains have been proposed as adsorption, remediation and drug delivery agents. Despite many studies there is scant structural data available. This X-ray absorption investigation represents the first direct structural data on the interaction of metals with SECs and allows elucidation of their structure–property relationships. Fe K-edge XANES and EXAFS data have shown that the iron local environment in SECs (derived from Lycopodium clavatum) reacted with aqueous ferric chloride solutions is similar to that of ferrihydrite (FeOOH) and by implication ferritin. Fe Kα XRF micro-focus experiments show that there is a poor correlation between the iron distribution and the underlying SEC structure indicating that the SEC is coated in the FeOOH material. In contrast, the Fe Kα XRF micro-focus experiments on SECs reacted with aqueous ferrous chloride solutions show that there is a very high correlation between the iron distribution and the SEC structure, indicating a much more specific form of interaction of the iron with the SEC surface functional groups. Fe K-edge XANES and EXAFS data show that the FeII can be easily oxidised to give a structure similar to, but not identical to that in the FeIII case, and that even if anaerobic conditions are used there is still partial oxidation to FeIII

    Protein free microcapsules obtained from plant spores as a model for drug delivery: Ibuprofen encapsulation, release and taste masking

    Get PDF
    Sporopollenin exine capsules (SEC) extracted from Lycopodium clavatum spores were shown to encapsulate ibuprofen as a drug model, with 97 ± 1% efficiency as measured by recovery of the loaded drug and absence of the drug on the SEC surface by scanning electron microscopy (SEM). The encapsulated ibuprofen was shown to be unchanged from its bulk crystalline form by solid state NMR, FTIR and XRD. Essential for drug delivery applications, SEC were shown to be non-toxic to human endothelial cells and free of allergenic protein epitopes by MALDI-TOF-MS and ESI-QqToF-MS. Potential application for targeted release into the intestinal region of the gastrointestinal tract (GIT) was demonstrated by 88 ± 1% of the drug being retained in simulated gastric fluid (SGF) after 45 minutes and 85 ± 2% being released after 5 min in buffer (PBS; pH 7.4). The SEC were shown to provide significant taste masking of encapsulated ibuprofen in a double blind trial with 10 human volunteers. © The Royal Society of Chemistry 2013

    Sporopollenin exine capsules (SpECs) derived from Lycopodium clavatum provide practical antioxidant properties by retarding rancidification of an ω-3 oil

    Get PDF
    In recent years the use of natural antioxidants in foodstuffs and personal care products has become increasingly important for consumers and therefore manufacturers. In this work, sporopollenin exine capsules (SpECs), extracted from spores of the common club moss Lycopodium clavatum L, have been shown to protect an ω-3 oil from oxidation caused by natural light or accelerated oxidation with UV irradiation. The mechanism of action has been shown to be principally by free radical quenching as opposed to light shielding, supported by evidence of similarity in levels of protection when the ratio of SpECs to oil was 0.2 % w/v compared with 50 % w/w. The antioxidant effect is not materially altered by the extraction process from the raw material and is clearly an inherent property of the sporopollenin contained in the spores of L. clavatum due to the accessible phenolic groups on the surface on the SpECs. These results provide promising evidence that SpECs could be useful as a bio-sourced antioxidant for protecting ω-3 oils and related oxidation-prone molecules

    Higher COVID-19 pneumonia risk associated with anti-IFN-α than with anti-IFN-ω auto-Abs in children

    Get PDF
    We found that 19 (10.4%) of 183 unvaccinated children hospitalized for COVID-19 pneumonia had autoantibodies (auto-Abs) neutralizing type I IFNs (IFN-alpha 2 in 10 patients: IFN-alpha 2 only in three, IFN-alpha 2 plus IFN-omega in five, and IFN-alpha 2, IFN-omega plus IFN-beta in two; IFN-omega only in nine patients). Seven children (3.8%) had Abs neutralizing at least 10 ng/ml of one IFN, whereas the other 12 (6.6%) had Abs neutralizing only 100 pg/ml. The auto-Abs neutralized both unglycosylated and glycosylated IFNs. We also detected auto-Abs neutralizing 100 pg/ml IFN-alpha 2 in 4 of 2,267 uninfected children (0.2%) and auto-Abs neutralizing IFN-omega in 45 children (2%). The odds ratios (ORs) for life-threatening COVID-19 pneumonia were, therefore, higher for auto-Abs neutralizing IFN-alpha 2 only (OR [95% CI] = 67.6 [5.7-9,196.6]) than for auto-Abs neutralizing IFN-. only (OR [95% CI] = 2.6 [1.2-5.3]). ORs were also higher for auto-Abs neutralizing high concentrations (OR [95% CI] = 12.9 [4.6-35.9]) than for those neutralizing low concentrations (OR [95% CI] = 5.5 [3.1-9.6]) of IFN-omega and/or IFN-alpha 2

    Multiple Scenario Generation of Subsurface Models:Consistent Integration of Information from Geophysical and Geological Data throuh Combination of Probabilistic Inverse Problem Theory and Geostatistics

    Get PDF
    Neutrinos with energies above 1017 eV are detectable with the Surface Detector Array of the Pierre Auger Observatory. The identification is efficiently performed for neutrinos of all flavors interacting in the atmosphere at large zenith angles, as well as for Earth-skimming \u3c4 neutrinos with nearly tangential trajectories relative to the Earth. No neutrino candidates were found in 3c 14.7 years of data taken up to 31 August 2018. This leads to restrictive upper bounds on their flux. The 90% C.L. single-flavor limit to the diffuse flux of ultra-high-energy neutrinos with an E\u3bd-2 spectrum in the energy range 1.0 7 1017 eV -2.5 7 1019 eV is E2 dN\u3bd/dE\u3bd < 4.4 7 10-9 GeV cm-2 s-1 sr-1, placing strong constraints on several models of neutrino production at EeV energies and on the properties of the sources of ultra-high-energy cosmic rays

    Hollow Pollen Shells to Enhance Drug Delivery

    No full text
    Pollen grain and spore shells are natural microcapsules designed to protect the genetic material of the plant from external damage. The shell is made up of two layers, the inner layer (intine), made largely of cellulose, and the outer layer (exine), composed mainly of sporopollenin. The relative proportion of each varies according to the plant species. The structure of sporopollenin has not been fully characterised but different studies suggest the presence of conjugated phenols, which provide antioxidant properties to the microcapsule and UV (ultraviolet) protection to the material inside it. These microcapsule shells have many advantageous properties, such as homogeneity in size, resilience to both alkalis and acids, and the ability to withstand temperatures up to 250 °C. These hollow microcapsules have the ability to encapsulate and release actives in a controlled manner. Their mucoadhesion to intestinal tissues may contribute to the extended contact of the sporopollenin with the intestinal mucosa leading to an increased efficiency of delivery of nutraceuticals and drugs. The hollow microcapsules can be filled with a solution of the active or active in a liquid form by simply mixing both together, and in some cases operating a vacuum. The active payload can be released in the human body depending on pressure on the microcapsule, solubility and/or pH factors. Active release can be controlled by adding a coating on the shell, or co-encapsulation with the active inside the shell

    Estudio pre factibilidad para la producción y comercialización de gelatina producida a base de colágeno de la piel de pota (Dosidicus Gigas) en Paita Piura

    No full text
    El objetivo del presente trabajo fue desarrollar un estudio de prefactibilidad para la producción y comercialización de gelatina producida a base de colágeno de la piel de pota (Dosidicus gigas) en Paita- Piura, siendo un trabajo de investigación tipo aplicada de nivel descriptivo. Los resultados de los análisis fisicoquímicos confirman la idoneidad de la piel de pota para ser considerados como materia prima de la elaboración de gelatina, estos análisis están dentro de los límites permitidos por la norma técnica peruana y por lo tanto demuestra que la gelatina producida a partir del colágeno extraído de la piel de pota es apta para la industria alimentaria, siendo el mercado norteño idóneo para absorber la producción de gelatina en la región Piura, ya que la gelatina es importada y/o fabricada en Lima, en una población de consumo de gelatina proyectada de 306206.7 kg de gelatina /año- habitante, para el año 2022, determinándose un rendimiento total para la obtención de gelatina a partir del colágeno extraído de la piel de pota de 5.02- 6.59%, por cada kilo de piel de pota, concluyéndose que el proyecto muestra indicadores financieros de rentabilidad por lo que debería extenderse la línea de producción de gelatina en la empresa COINREFRI S., con un VAN de S/. 214,598.56 y con una recuperación del retorno de la inversión del 163%, mostrando la viabilidad y sostenibilidad del proyecto.The objective of the present work was to develop a pre-feasibility study for the production and commercialization of gelatin produced from the collagen of the squid skin (Dosidicus gigas) in Paita-Piura, being a descriptive applied research work. The results of the physicochemical analyses confirm the suitability of the squid skin to be considered as raw material for the elaboration of gelatin, these analyses are within the limits allowed by the Peruvian technical norm and therefore demonstrate that the gelatin produced from the collagen extracted from the squid skin is suitable for the food industry, The northern market is ideal for absorbing gelatin production in the Piura region, since gelatin is imported and/or manufactured in Lima, in a projected gelatin consumption population of 306206. 7 kg of gelatin/year- inhabitant, for the year 2022, determining a total yield for obtaining gelatin from the collagen extracted from the squid skin of 5.02-6.59%, for each kilo of squid skin, concluding that the project shows financial indicators of profitability so it should extend the production line of gelatin in the company COINREFRI S., with an NPV of S/. 214,598.56.457 and with a return on investment of 163%, showing the viability and sustainability of the projectTesi

    Viability of plant spore exine capsules for microencapsulation

    No full text
    Sporopollenin exine capsules (SECs) (outer exoskeletal wall of the spores of Lycopodium clavatum) were extracted and examined for their potential use as microcapsules. They were shown, by laser scanning confocal microscopy (LSCM), to be void of their inner contents. The removal of nitrogenous and other internal materials was supported by a combination of elemental and gravimetric analyses. Two different methods were investigated to encapsulate substances into SECs which were (i) mild passive migration of materials into the SECs and (ii) subjecting SECs and materials to a vacuum. A range of fluorescent dyes with different polarities were seen using LSCM to encapsulate efficiently into the SECs (up to 1 g. g(-1)). Relatively unstable materials with different polarities were encapsulated into the SECs: polyunsaturated oils, which are labile to oxidation, and the enzymes streptavidin-horseradish peroxidase (sHRP) and alkaline phosphatase (ALP). Irrespective of the encapsulation techniques employed no oxidation of the oils or denaturation of the enzymes was observed following their full recovery. This study gives the first indication of the viability of SECs to microencapsulate various potentially unstable materials without causing a detrimental effect
    corecore