37 research outputs found

    GB3.0: a platform for plant bio-design that connects functional DNA elements with associated biological data

    Full text link
    This is a pre-copyedited, author-produced version of an article accepted for publication in Nucleic Acids Research following peer review. The version of record Vázquez-Vilar, M.; Quijano-Rubio, A.; Fernandez Del Carmen, MA.; Sarrion-Perdigones, A.; Ochoa-Fernández, R.; Ziarsolo Areitioaurtena, P.; Blanca Postigo, JM.... (2017). GB3.0: a platform for plant bio-design that connects functional DNA elements with associated biological data. Nucleic Acids Research. 45(4):2196-2209. doi:10.1093/nar/gkw1326 is available online at: http://doi.org/10.1093/nar/gkw1326.[EN] Modular DNA assembly simplifies multigene engineering in Plant Synthetic Biology. Furthermore, the recent adoption of a common syntax to facilitate the exchange of plant DNA parts (phytobricks) is a promising strategy to speed up genetic engineering. Following this lead, here, we present a platform for plant biodesign that incorporates functional descriptions of phytobricks obtained under pre-defined experimental conditions, and systematically registers the resulting information as metadata for documentation. To facilitate the handling of functional descriptions, we developed a new version (v3.0) of the GoldenBraid (GB) webtool that integrates the experimental data and displays it in the form of datasheets. We report the use of the Luciferase/Renilla (Luc/Ren) transient agroinfiltration assay in Nicotiana benthamiana as a standard to estimate relative transcriptional activities conferred by regulatory phytobricks, and show the consistency and reproducibility of this method in the characterization of a synthetic phytobrick based on the CaMV35S promoter. Furthermore, we illustrate the potential for combinatorial optimization and incremental innovation of the GB3.0 platform in two separate examples, (i) the development of a collection of orthogonal transcriptional regulators based on phiC31 integrase and (ii) the design of a small genetic circuit that connects a glucocorticoid switch to a MYB/bHLH transcriptional activation module.Spanish Ministry of Economy and Competitiveness [BIO2013-42193-R and BIO2016-78601-R projects to A.G. and D.O.]. Funding for open access charge: Spanish Ministry of Economy and Competitiveness [BIO2013-42193-R and BIO2016-78601-R projects to A.G. and D.O.].Vázquez-Vilar, M.; Quijano-Rubio, A.; Fernández Del Carmen, MA.; Sarrion-Perdigones, A.; Ochoa-Fernández, R.; Ziarsolo Areitioaurtena, P.; Blanca Postigo, JM.... (2017). GB3.0: a platform for plant bio-design that connects functional DNA elements with associated biological data. Nucleic Acids Research. 45(4):2196-2209. https://doi.org/10.1093/nar/gkw1326S21962209454Dalal, J., Yalamanchili, R., La Hovary, C., Ji, M., Rodriguez-Welsh, M., Aslett, D., … Qu, R. (2015). A novel gateway-compatible binary vector series (PC-GW) for flexible cloning of multiple genes for genetic transformation of plants. Plasmid, 81, 55-62. doi:10.1016/j.plasmid.2015.06.003Cha-aim, K., Fukunaga, T., Hoshida, H., & Akada, R. (2009). Reliable fusion PCR mediated by GC-rich overlap sequences. Gene, 434(1-2), 43-49. doi:10.1016/j.gene.2008.12.014Nour-Eldin, H. H., Geu-Flores, F., & Halkier, B. A. (2010). USER Cloning and USER Fusion: The Ideal Cloning Techniques for Small and Big Laboratories. Methods in Molecular Biology, 185-200. doi:10.1007/978-1-60761-723-5_13Engler, C., Kandzia, R., & Marillonnet, S. (2008). A One Pot, One Step, Precision Cloning Method with High Throughput Capability. PLoS ONE, 3(11), e3647. doi:10.1371/journal.pone.0003647Blake, W. J., Chapman, B. A., Zindal, A., Lee, M. E., Lippow, S. M., & Baynes, B. M. (2010). Pairwise selection assembly for sequence-independent construction of long-length DNA. Nucleic Acids Research, 38(8), 2594-2602. doi:10.1093/nar/gkq123De Paoli, H. C., Tuskan, G. A., & Yang, X. (2016). An innovative platform for quick and flexible joining of assorted DNA fragments. Scientific Reports, 6(1). doi:10.1038/srep19278Engler, C., Gruetzner, R., Kandzia, R., & Marillonnet, S. (2009). Golden Gate Shuffling: A One-Pot DNA Shuffling Method Based on Type IIs Restriction Enzymes. PLoS ONE, 4(5), e5553. doi:10.1371/journal.pone.0005553Weber, E., Engler, C., Gruetzner, R., Werner, S., & Marillonnet, S. (2011). A Modular Cloning System for Standardized Assembly of Multigene Constructs. PLoS ONE, 6(2), e16765. doi:10.1371/journal.pone.0016765Sarrion-Perdigones, A., Falconi, E. E., Zandalinas, S. I., Juárez, P., Fernández-del-Carmen, A., Granell, A., & Orzaez, D. (2011). GoldenBraid: An Iterative Cloning System for Standardized Assembly of Reusable Genetic Modules. PLoS ONE, 6(7), e21622. doi:10.1371/journal.pone.0021622Patron, N. J., Orzaez, D., Marillonnet, S., Warzecha, H., Matthewman, C., Youles, M., … Rogers, C. (2015). Standards for plant synthetic biology: a common syntax for exchange ofDNAparts. New Phytologist, 208(1), 13-19. doi:10.1111/nph.13532Liu, W., & Stewart, C. N. (2015). Plant synthetic biology. Trends in Plant Science, 20(5), 309-317. doi:10.1016/j.tplants.2015.02.004Wang, Y.-H., Wei, K. Y., & Smolke, C. D. (2013). Synthetic Biology: Advancing the Design of Diverse Genetic Systems. Annual Review of Chemical and Biomolecular Engineering, 4(1), 69-102. doi:10.1146/annurev-chembioeng-061312-103351Engler, C., Youles, M., Gruetzner, R., Ehnert, T.-M., Werner, S., Jones, J. D. G., … Marillonnet, S. (2014). A Golden Gate Modular Cloning Toolbox for Plants. ACS Synthetic Biology, 3(11), 839-843. doi:10.1021/sb4001504Canton, B., Labno, A., & Endy, D. (2008). Refinement and standardization of synthetic biological parts and devices. Nature Biotechnology, 26(7), 787-793. doi:10.1038/nbt1413Sarrion-Perdigones, A., Vazquez-Vilar, M., Palaci, J., Castelijns, B., Forment, J., Ziarsolo, P., … Orzaez, D. (2013). GoldenBraid 2.0: A Comprehensive DNA Assembly Framework for Plant Synthetic Biology. PLANT PHYSIOLOGY, 162(3), 1618-1631. doi:10.1104/pp.113.217661Orzaez, D., Medina, A., Torre, S., Fernández-Moreno, J. P., Rambla, J. L., Fernández-del-Carmen, A., … Granell, A. (2009). A Visual Reporter System for Virus-Induced Gene Silencing in Tomato Fruit Based on Anthocyanin Accumulation. Plant Physiology, 150(3), 1122-1134. doi:10.1104/pp.109.139006Yoo, S.-D., Cho, Y.-H., & Sheen, J. (2007). Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nature Protocols, 2(7), 1565-1572. doi:10.1038/nprot.2007.199Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671-675. doi:10.1038/nmeth.2089Gutiérrez, S., Yvon, M., Thébaud, G., Monsion, B., Michalakis, Y., & Blanc, S. (2010). Dynamics of the Multiplicity of Cellular Infection in a Plant Virus. PLoS Pathogens, 6(9), e1001113. doi:10.1371/journal.ppat.1001113Vazquez-Vilar, M., Sarrion-Perdigones, A., Ziarsolo, P., Blanca, J., Granell, A., & Orzaez, D. (2015). Software-Assisted Stacking of Gene Modules Using GoldenBraid 2.0 DNA-Assembly Framework. Plant Functional Genomics, 399-420. doi:10.1007/978-1-4939-2444-8_20Vazquez-Vilar, M., Bernabé-Orts, J. M., Fernandez-del-Carmen, A., Ziarsolo, P., Blanca, J., Granell, A., & Orzaez, D. (2016). A modular toolbox for gRNA–Cas9 genome engineering in plants based on the GoldenBraid standard. Plant Methods, 12(1). doi:10.1186/s13007-016-0101-2Quinn, J. Y., Cox, R. S., Adler, A., Beal, J., Bhatia, S., Cai, Y., … Sauro, H. M. (2015). SBOL Visual: A Graphical Language for Genetic Designs. PLOS Biology, 13(12), e1002310. doi:10.1371/journal.pbio.1002310Thorpe, H. M., Wilson, S. E., & Smith, M. C. M. (2000). Control of directionality in the site-specific recombination system of the Streptomyces phage phiC31. Molecular Microbiology, 38(2), 232-241. doi:10.1046/j.1365-2958.2000.02142.xKhaleel, T., Younger, E., McEwan, A. R., Varghese, A. S., & Smith, M. C. M. (2011). A phage protein that binds φC31 integrase to switch its directionality. Molecular Microbiology, 80(6), 1450-1463. doi:10.1111/j.1365-2958.2011.07696.xOrt, D. R., Merchant, S. S., Alric, J., Barkan, A., Blankenship, R. E., Bock, R., … Zhu, X. G. (2015). Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proceedings of the National Academy of Sciences, 112(28), 8529-8536. doi:10.1073/pnas.1424031112Smolke, C. D. (2009). Building outside of the box: iGEM and the BioBricks Foundation. Nature Biotechnology, 27(12), 1099-1102. doi:10.1038/nbt1209-1099Cambray, G., Mutalik, V. K., & Arkin, A. P. (2011). Toward rational design of bacterial genomes. Current Opinion in Microbiology, 14(5), 624-630. doi:10.1016/j.mib.2011.08.001Mutalik, V. K., Guimaraes, J. C., Cambray, G., Mai, Q.-A., Christoffersen, M. J., Martin, L., … Arkin, A. P. (2013). Quantitative estimation of activity and quality for collections of functional genetic elements. Nature Methods, 10(4), 347-353. doi:10.1038/nmeth.2403Cambray, G., Guimaraes, J. C., Mutalik, V. K., Lam, C., Mai, Q.-A., Thimmaiah, T., … Endy, D. (2013). Measurement and modeling of intrinsic transcription terminators. Nucleic Acids Research, 41(9), 5139-5148. doi:10.1093/nar/gkt163Mutalik, V. K., Guimaraes, J. C., Cambray, G., Lam, C., Christoffersen, M. J., Mai, Q.-A., … Endy, D. (2013). Precise and reliable gene expression via standard transcription and translation initiation elements. Nature Methods, 10(4), 354-360. doi:10.1038/nmeth.2404Bartley, B., Beal, J., Clancy, K., Misirli, G., Roehner, N., Oberortner, E., … Sauro, H. (2015). Synthetic Biology Open Language (SBOL) Version 2.0.0. Journal of Integrative Bioinformatics, 12(2). doi:10.1515/jib-2015-272Angov, E. (2011). Codon usage: Nature’s roadmap to expression and folding of proteins. Biotechnology Journal, 6(6), 650-659. doi:10.1002/biot.201000332Hillson, N. J., Rosengarten, R. D., & Keasling, J. D. (2011). j5 DNA Assembly Design Automation Software. ACS Synthetic Biology, 1(1), 14-21. doi:10.1021/sb2000116Brazma, A., Hingamp, P., Quackenbush, J., Sherlock, G., Spellman, P., Stoeckert, C., … Vingron, M. (2001). Minimum information about a microarray experiment (MIAME)—toward standards for microarray data. Nature Genetics, 29(4), 365-371. doi:10.1038/ng1201-365Taylor, C. F., Paton, N. W., Lilley, K. S., Binz, P.-A., Julian, R. K., Jones, A. R., … Hermjakob, H. (2007). The minimum information about a proteomics experiment (MIAPE). Nature Biotechnology, 25(8), 887-893. doi:10.1038/nbt1329Yang, Y., Li, R., & Qi, M. (2000). In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves. The Plant Journal, 22(6), 543-551. doi:10.1046/j.1365-313x.2000.00760.xKapila, J., De Rycke, R., Van Montagu, M., & Angenon, G. (1997). An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Science, 122(1), 101-108. doi:10.1016/s0168-9452(96)04541-4Schaumberg, K. A., Antunes, M. S., Kassaw, T. K., Xu, W., Zalewski, C. S., Medford, J. I., & Prasad, A. (2015). Quantitative characterization of genetic parts and circuits for plant synthetic biology. Nature Methods, 13(1), 94-100. doi:10.1038/nmeth.3659Dafny-Yelin, M., & Tzfira, T. (2007). Delivery of Multiple Transgenes to Plant Cells. Plant Physiology, 145(4), 1118-1128. doi:10.1104/pp.107.106104TZFIRA, T. (2004). Agrobacterium T-DNA integration: molecules and models. Trends in Genetics, 20(8), 375-383. doi:10.1016/j.tig.2004.06.004De Buck, S., De Wilde, C., Van Montagu, M., & Depicker, A. (2000). Determination of the T-DNA Transfer and the T-DNA Integration Frequencies upon Cocultivation ofArabidopsis thalianaRoot Explants. Molecular Plant-Microbe Interactions, 13(6), 658-665. doi:10.1094/mpmi.2000.13.6.658Konermann, S., Brigham, M. D., Trevino, A. E., Joung, J., Abudayyeh, O. O., Barcena, C., … Zhang, F. (2014). Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature, 517(7536), 583-588. doi:10.1038/nature14136Gilbert, L. A., Horlbeck, M. A., Adamson, B., Villalta, J. E., Chen, Y., Whitehead, E. H., … Weissman, J. S. (2014). Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation. Cell, 159(3), 647-661. doi:10.1016/j.cell.2014.09.029Moore, I., Samalova, M., & Kurup, S. (2006). Transactivated and chemically inducible gene expression in plants. The Plant Journal, 45(4), 651-683. doi:10.1111/j.1365-313x.2006.02660.xButelli, E., Titta, L., Giorgio, M., Mock, H.-P., Matros, A., Peterek, S., … Martin, C. (2008). Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nature Biotechnology, 26(11), 1301-1308. doi:10.1038/nbt.1506Müller, K., Siegel, D., Rodriguez Jahnke, F., Gerrer, K., Wend, S., Decker, E. L., … Zurbriggen, M. D. (2014). A red light-controlled synthetic gene expression switch for plant systems. Mol. BioSyst., 10(7), 1679-1688. doi:10.1039/c3mb70579jDavuluri, G. R., van Tuinen, A., Fraser, P. D., Manfredonia, A., Newman, R., Burgess, D., … Bowler, C. (2005). Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nature Biotechnology, 23(7), 890-895. doi:10.1038/nbt1108Zhang, Y., Butelli, E., Alseekh, S., Tohge, T., Rallapalli, G., Luo, J., … Martin, C. (2015). Multi-level engineering facilitates the production of phenylpropanoid compounds in tomato. Nature Communications, 6(1). doi:10.1038/ncomms9635Ori, N., Juarez, M. T., Jackson, D., Yamaguchi, J., Banowetz, G. M., & Hake, S. (1999). Leaf Senescence Is Delayed in Tobacco Plants Expressing the Maize Homeobox Gene knotted1 under the Control of a Senescence-Activated Promoter. The Plant Cell, 11(6), 1073-1080. doi:10.1105/tpc.11.6.1073Azuma, M., Morimoto, R., Hirose, M., Morita, Y., Hoshino, A., Iida, S., … Shiratake, K. (2015). A petal‐specific In MYB 1 promoter from Japanese morning glory: a useful tool for molecular breeding of floricultural crops. Plant Biotechnology Journal, 14(1), 354-363. doi:10.1111/pbi.12389Paine, J. A., Shipton, C. A., Chaggar, S., Howells, R. M., Kennedy, M. J., Vernon, G., … Drake, R. (2005). Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nature Biotechnology, 23(4), 482-487. doi:10.1038/nbt1082Houmard, N. M., Mainville, J. L., Bonin, C. P., Huang, S., Luethy, M. H., & Malvar, T. M. (2007). High-lysine corn generated by endosperm-specific suppression of lysine catabolism using RNAi. Plant Biotechnology Journal, 5(5), 605-614. doi:10.1111/j.1467-7652.2007.00265.xPadidam, M. (2003). Chemically regulated gene expression in plants. Current Opinion in Plant Biology, 6(2), 169-177. doi:10.1016/s1369-5266(03)00005-0Kinkema, M., Geijskes, R. J., Shand, K., Coleman, H. D., De Lucca, P. C., Palupe, A., … Sainz, M. B. (2013). An improved chemically inducible gene switch that functions in the monocotyledonous plant sugar cane. Plant Molecular Biology, 84(4-5), 443-454. doi:10.1007/s11103-013-0140-

    PYL1- and PYL8-like ABA Receptors of Nicotiana benthamiana Play a Key Role in ABA Response in Seed and Vegetative Tissue

    Get PDF
    19 pags., 7 figs., 3 tabs. -- This article belongs to the Special Issue Drought and Heat Stress Signalling Responses in PlantsTo face the challenges of climate change and sustainable food production, it is essential to develop crop genome editing techniques to pinpoint key genes involved in abiotic stress signaling. The identification of those prevailing abscisic acid (ABA) receptors that mediate plant-environment interactions is quite challenging in polyploid plants because of the high number of genes in the PYR/PYL/RCAR ABA receptor family. Nicotiana benthamiana is a biotechnological crop amenable to genome editing, and given the importance of ABA signaling in coping with drought stress, we initiated the analysis of its 23-member family of ABA receptors through multiplex CRISPR/Cas9-mediated editing. We generated several high-order mutants impaired in NbPYL1-like and NbPYL8-like receptors, which showed certain insensitivity to ABA for inhibition of seedling establishment, growth, and development of shoot and lateral roots as well as reduced sensitivity to the PYL1-agonist cyanabactin (CB). However, in these high-order mutants, regulation of transpiration was not affected and was responsive to ABA treatment. This reveals a robust and redundant control of transpiration in this allotetraploid plant that probably reflects its origin from the extreme habitat of central Australia.This research was supported by grant PID2020-113100RB (P.L.R.) and PID2020-119805RB (A.A.) funded by MCIN/AEI/10.13039/501100011033 and by Newcotiana H2020 760331 (D.O.).Peer reviewe

    Standards for plant synthetic biology: A common syntax for exchange of DNA parts

    Get PDF
    © 2015 New Phytologist Trust. Inventors in the field of mechanical and electronic engineering can access multitudes of components and, thanks to standardization, parts from different manufacturers can be used in combination with each other. The introduction of BioBrick standards for the assembly of characterized DNA sequences was a landmark in microbial engineering, shaping the field of synthetic biology. Here, we describe a standard for Type IIS restriction endonuclease-mediated assembly, defining a common syntax of 12 fusion sites to enable the facile assembly of eukaryotic transcriptional units. This standard has been developed and agreed by representatives and leaders of the international plant science and synthetic biology communities, including inventors, developers and adopters of Type IIS cloning methods. Our vision is of an extensive catalogue of standardized, characterized DNA parts that will accelerate plant bioengineering

    Combinatorial Analysis of Secretory Immunoglobulin A (sIgA) Expression in Plants

    Get PDF
    Delivery of secretory immunoglobulin A (sIgA) to mucosal surfaces as a passive immunotherapy agent is a promising strategy to prevent infectious diseases. Recombinant sIgA production in plants requires the co-expression of four transcriptional units encoding the light chain (LC), heavy chain (HC), joining chain (JC) and secretory component (SC). As a way to optimize sIgA production in plants, we tested the combinatorial expression of 16 versions of a human sIgA against the VP8* rotavirus antigen in Nicotiana benthamiana, using the recently developed GoldenBraid multigene assembly system. Each sIgA version was obtained by combining one of the two types of HC (alpha 1 and alpha 2) with one of the two LC types (k and lambda) and linking or not a KDEL peptide to the HC and/or SC. From the analysis of the anti-VP8* activity, it was concluded that those sIgA versions carrying HC alpha 1 and LC lambda provided the highest yields. Moreover, ER retention significantly increased antibody production, particularly when the KDEL signal was linked to the SC. Maximum expression levels of 32.5 mu g IgA/g fresh weight (FW) were obtained in the best performing combination, with an estimated 33% of it in the form of a secretory complex.This work has been funded by Grant BIO2010-15384 from Plan Nacional I + D of the Spanish Ministry of Science. Juarez P. is a recipient of a FPU fellowship, and Sarrion-Perdigones A. and Huet-Trujillo E. are recipients of a FPI fellowship. We want to thank Monedero for kindly providing scFv and VP8* clones.Juárez Ortega, P.; Huet Trujillo, E.; Sarrion-Perdigones, A.; Falconi, E.; Granell Richart, A.; Orzáez Calatayud, DV. (2013). Combinatorial Analysis of Secretory Immunoglobulin A (sIgA) Expression in Plants. International Journal of Molecular Sciences. 14(3):6205-6222. https://doi.org/10.3390/ijms14036205S62056222143Reichert, J. M., & Valge-Archer, V. E. (2007). Development trends for monoclonal antibody cancer therapeutics. Nature Reviews Drug Discovery, 6(5), 349-356. doi:10.1038/nrd2241Corthésy, B. (2010). Role of secretory immunoglobulin A and secretory component in the protection of mucosal surfaces. Future Microbiology, 5(5), 817-829. doi:10.2217/fmb.10.39Corthésy, B. (2003). Recombinant Secretory Immunoglobulin A in Passive Immunotherapy: Linking Immunology and Biotechnology. Current Pharmaceutical Biotechnology, 4(1), 51-67. doi:10.2174/1389201033378020Corthësy, B. (2008). Secretory immunoglobulin A: well beyond immune exclusion at mucosal surfaces. Immunopharmacology and Immunotoxicology, 31(2), 174-179. doi:10.1080/08923970802438441Sarrion-Perdigones, A., Juarez, P., Granell, A., & Orzaez, D. (2011). Production of Antibodies in Plants. Cell Engineering, 143-164. doi:10.1007/978-94-007-1257-7_7Paul, M., Dolleweerd, C. van, Drake, P. M. W., Reljic, R., Thangaraj, H., Barbi, T., … Ma, J. K.-C. (2011). Molecular pharming. Human Vaccines, 7(3), 375-382. doi:10.4161/hv.7.3.14456Fischer, R., Stoger, E., Schillberg, S., Christou, P., & Twyman, R. M. (2004). Plant-based production of biopharmaceuticals. Current Opinion in Plant Biology, 7(2), 152-158. doi:10.1016/j.pbi.2004.01.007Twyman, R. M., Stoger, E., Schillberg, S., Christou, P., & Fischer, R. (2003). Molecular farming in plants: host systems and expression technology. Trends in Biotechnology, 21(12), 570-578. doi:10.1016/j.tibtech.2003.10.002Saint-Jore-Dupas, C., Faye, L., & Gomord, V. (2007). From planta to pharma with glycosylation in the toolbox. Trends in Biotechnology, 25(7), 317-323. doi:10.1016/j.tibtech.2007.04.008Ma, J., Hiatt, A., Hein, M., Vine, N., Wang, F., Stabila, P., … Lehner, T. (1995). Generation and assembly of secretory antibodies in plants. Science, 268(5211), 716-719. doi:10.1126/science.7732380Ma, J. K.-C., Hikmat, B. Y., Wycoff, K., Vine, N. D., Chargelegue, D., Yu, L., … Lehner, T. (1998). Characterization of a recombinant plant monoclonal secretory antibody and preventive immunotherapy in humans. Nature Medicine, 4(5), 601-606. doi:10.1038/nm0598-601Weintraub, J. A., Hilton, J. F., White, J. M., Hoover, C. I., Wycoff, K. L., Yu, L., … Featherstone, J. D. B. (2005). Clinical Trial of a Plant-Derived Antibody on Recolonization of Mutans Streptococci. Caries Research, 39(3), 241-250. doi:10.1159/000084805Wycoff, K. (2005). Secretory IgA Antibodies from Plants. Current Pharmaceutical Design, 11(19), 2429-2437. doi:10.2174/1381612054367508Nicholson, L., Gonzalez-Melendi, P., Van Dolleweerd, C., Tuck, H., Perrin, Y., Ma, J. K.-C., … Stoger, E. (2004). A recombinant multimeric immunoglobulin expressed in rice shows assembly-dependent subcellular localization in endosperm cells. Plant Biotechnology Journal, 3(1), 115-127. doi:10.1111/j.1467-7652.2004.00106.xWieland, W. H., Lammers, A., Schots, A., & Orzáez, D. V. (2006). Plant expression of chicken secretory antibodies derived from combinatorial libraries. Journal of Biotechnology, 122(3), 382-391. doi:10.1016/j.jbiotec.2005.12.020Larrick, J. W., Yu, L., Naftzger, C., Jaiswal, S., & Wycoff, K. (2001). Production of secretory IgA antibodies in plants. Biomolecular Engineering, 18(3), 87-94. doi:10.1016/s1389-0344(01)00102-2FOLEY, R. C., RAISONS, R. L., & BEH, K. J. (1991). Monoclonal Antibody Against Sheep Kappa Light Chain. Hybridoma, 10(4), 507-515. doi:10.1089/hyb.1991.10.507Furtado, P. B., Whitty, P. W., Robertson, A., Eaton, J. T., Almogren, A., Kerr, M. A., … Perkins, S. J. (2004). Solution Structure Determination of Monomeric Human IgA2 by X-ray and Neutron Scattering, Analytical Ultracentrifugation and Constrained Modelling: A Comparison with Monomeric Human IgA1. Journal of Molecular Biology, 338(5), 921-941. doi:10.1016/j.jmb.2004.03.007De Muynck, B., Navarre, C., & Boutry, M. (2010). Production of antibodies in plants: status after twenty years. Plant Biotechnology Journal, 8(5), 529-563. doi:10.1111/j.1467-7652.2009.00494.xMa, J. K.-C., Drake, P. M. W., & Christou, P. (2003). The production of recombinant pharmaceutical proteins in plants. Nature Reviews Genetics, 4(10), 794-805. doi:10.1038/nrg1177De Muynck, B., Navarre, C., Nizet, Y., Stadlmann, J., & Boutry, M. (2009). Different subcellular localization and glycosylation for a functional antibody expressed in Nicotiana tabacum plants and suspension cells. Transgenic Research, 18(3), 467-482. doi:10.1007/s11248-008-9240-1D�ring, K., Hippe, S., Kreuzaler, F., & Schell, J. (1990). Synthesis and self-assembly of a functional monoclonal antibody in transgenic Nicotiana tabacum. Plant Molecular Biology, 15(2), 281-293. doi:10.1007/bf00036914Wilde, C. D., Rycke, R. D., Beeckman, T., Neve, M. D., Montagu, M. V., Engler, G., & Depicker, A. (1998). Accumulation Pattern of IgG Antibodies and Fab Fragments in Transgenic Arabidopsis thaliana Plants. Plant and Cell Physiology, 39(6), 639-646. doi:10.1093/oxfordjournals.pcp.a029416Schouten, A., Roosien, J., van Engelen, F. A., (Ineke) de Jong, G. A. M., (Tanja) Borst-Vrenssen, A. W. M., Zilverentant, J. F., … Bakker, J. (1996). The C-terminal KDEL sequence increases the expression level of a single-chain antibody designed to be targeted to both the cytosol and the secretory pathway in transgenic tobacco. Plant Molecular Biology, 30(4), 781-793. doi:10.1007/bf00019011Bencurova, M. (2004). Specificity of IgG and IgE antibodies against plant and insect glycoprotein glycans determined with artificial glycoforms of human transferrin. Glycobiology, 14(5), 457-466. doi:10.1093/glycob/cwh058Gomord, V., Fitchette, A.-C., Menu-Bouaouiche, L., Saint-Jore-Dupas, C., Plasson, C., Michaud, D., & Faye, L. (2010). Plant-specific glycosylation patterns in the context of therapeutic protein production. Plant Biotechnology Journal, 8(5), 564-587. doi:10.1111/j.1467-7652.2009.00497.xSarrion-Perdigones, A., Falconi, E. E., Zandalinas, S. I., Juárez, P., Fernández-del-Carmen, A., Granell, A., & Orzaez, D. (2011). GoldenBraid: An Iterative Cloning System for Standardized Assembly of Reusable Genetic Modules. PLoS ONE, 6(7), e21622. doi:10.1371/journal.pone.0021622Weber, E., Engler, C., Gruetzner, R., Werner, S., & Marillonnet, S. (2011). A Modular Cloning System for Standardized Assembly of Multigene Constructs. PLoS ONE, 6(2), e16765. doi:10.1371/journal.pone.0016765Monedero, V., Rodriguez-Diaz, J., Viana, R., Buesa, J., & Perez-Martinez, G. (2004). Selection of Single-Chain Antibodies against the VP8* Subunit of Rotavirus VP4 Outer Capsid Protein and Their Expression in Lactobacillus casei. Applied and Environmental Microbiology, 70(11), 6936-6939. doi:10.1128/aem.70.11.6936-6939.2004Juárez, P., Presa, S., Espí, J., Pineda, B., Antón, M. T., Moreno, V., … Orzaez, D. (2011). Neutralizing antibodies against rotavirus produced in transgenically labelled purple tomatoes. Plant Biotechnology Journal, 10(3), 341-352. doi:10.1111/j.1467-7652.2011.00666.xLangley, R., Wines, B., Willoughby, N., Basu, I., Proft, T., & Fraser, J. D. (2005). The Staphylococcal Superantigen-Like Protein 7 Binds IgA and Complement C5 and Inhibits IgA-FcαRI Binding and Serum Killing of Bacteria. The Journal of Immunology, 174(5), 2926-2933. doi:10.4049/jimmunol.174.5.2926Sack, M., Paetz, A., Kunert, R., Bomble, M., Hesse, F., Stiegler, G., … Rademacher, T. (2007). Functional analysis of the broadly neutralizing human anti-HIV-1 antibody 2F5 produced in transgenic BY-2 suspension cultures. The FASEB Journal, 21(8), 1655-1664. doi:10.1096/fj.06-5863comRamessar, K., Rademacher, T., Sack, M., Stadlmann, J., Platis, D., Stiegler, G., … Christou, P. (2008). Cost-effective production of a vaginal protein microbicide to prevent HIV transmission. Proceedings of the National Academy of Sciences, 105(10), 3727-3732. doi:10.1073/pnas.0708841104Brandtzaeg, P., & Prydz, H. (1984). Direct evidence for an integrated function of J chain and secretory component in epithelial transport of immunoglobulins. Nature, 311(5981), 71-73. doi:10.1038/311071a0Johansen, Braathen, & Brandtzaeg. (2000). Role of J Chain in Secretory Immunoglobulin Formation. Scandinavian Journal of Immunology, 52(3), 240-248. doi:10.1046/j.1365-3083.2000.00790.xBraathen, R., Hohman, V. S., Brandtzaeg, P., & Johansen, F.-E. (2007). Secretory Antibody Formation: Conserved Binding Interactions between J Chain and Polymeric Ig Receptor from Humans and Amphibians. The Journal of Immunology, 178(3), 1589-1597. doi:10.4049/jimmunol.178.3.1589Murthy, A. K., Chaganty, B. K. R., Troutman, T., Guentzel, M. N., Yu, J.-J., Ali, S. K., … Arulanandam, B. P. (2011). Mannose-Containing Oligosaccharides of Non-Specific Human Secretory Immunoglobulin A Mediate Inhibition of Vibrio cholerae Biofilm Formation. PLoS ONE, 6(2), e16847. doi:10.1371/journal.pone.0016847Mathias, A., & Corthésy, B. (2011). N-Glycans on secretory component. Gut Microbes, 2(5), 287-293. doi:10.4161/gmic.2.5.18269Hu, L., Crawford, S. E., Czako, R., Cortes-Penfield, N. W., Smith, D. F., Le Pendu, J., … Prasad, B. V. V. (2012). Cell attachment protein VP8* of a human rotavirus specifically interacts with A-type histo-blood group antigen. Nature, 485(7397), 256-259. doi:10.1038/nature10996Yu, X., Dang, V. T., Fleming, F. E., von Itzstein, M., Coulson, B. S., & Blanchard, H. (2012). Structural Basis of Rotavirus Strain Preference toward N-Acetyl- or N-Glycolylneuraminic Acid-Containing Receptors. Journal of Virology, 86(24), 13456-13466. doi:10.1128/jvi.06975-11Haselhorst, T., Fleming, F. E., Dyason, J. C., Hartnell, R. D., Yu, X., Holloway, G., … von Itzstein, M. (2008). Sialic acid dependence in rotavirus host cell invasion. Nature Chemical Biology, 5(2), 91-93. doi:10.1038/nchembio.134Bonner, A., Almogren, A., Furtado, P. B., Kerr, M. A., & Perkins, S. J. (2008). The Nonplanar Secretory IgA2 and Near Planar Secretory IgA1 Solution Structures Rationalize Their Different Mucosal Immune Responses. Journal of Biological Chemistry, 284(8), 5077-5087. doi:10.1074/jbc.m807529200Yoo, E. M., & Morrison, S. L. (2005). IgA: An immune glycoprotein. Clinical Immunology, 116(1), 3-10. doi:10.1016/j.clim.2005.03.010Karnoup, A. S., Turkelson, V., & Anderson, W. H. K. (2005). O-Linked glycosylation in maize-expressed human IgA1. Glycobiology, 15(10), 965-981. doi:10.1093/glycob/cwi077Ramsland, P. A., Willoughby, N., Trist, H. M., Farrugia, W., Hogarth, P. M., Fraser, J. D., & Wines, B. D. (2007). Structural basis for evasion of IgA immunity by Staphylococcus aureus revealed in the complex of SSL7 with Fc of human IgA1. Proceedings of the National Academy of Sciences, 104(38), 15051-15056. doi:10.1073/pnas.0706028104Almogren, A., Senior, B. W., & Kerr, M. A. (2007). A comparison of the binding of secretory component to immunoglobulin A (IgA) in human colostral S-IgA1 and S-IgA2. Immunology, 120(2), 273-280. doi:10.1111/j.1365-2567.2006.02498.xOrzaez, D., Mirabel, S., Wieland, W. H., & Granell, A. (2006). Agroinjection of Tomato Fruits. A Tool for Rapid Functional Analysis of Transgenes Directly in Fruit. Plant Physiology, 140(1), 3-11. doi:10.1104/pp.105.06822

    GoldenBraid: An Iterative Cloning System for Standardized Assembly of Reusable Genetic Modules

    Get PDF
    Synthetic Biology requires efficient and versatile DNA assembly systems to facilitate the building of new genetic modules/pathways from basic DNA parts in a standardized way. Here we present GoldenBraid (GB), a standardized assembly system based on type IIS restriction enzymes that allows the indefinite growth of reusable gene modules made of standardized DNA pieces. The GB system consists of a set of four destination plasmids (pDGBs) designed to incorporate multipartite assemblies made of standard DNA parts and to combine them binarily to build increasingly complex multigene constructs. The relative position of type IIS restriction sites inside pDGB vectors introduces a double loop (“braid”) topology in the cloning strategy that allows the indefinite growth of composite parts through the succession of iterative assembling steps, while the overall simplicity of the system is maintained. We propose the use of GoldenBraid as an assembly standard for Plant Synthetic Biology. For this purpose we have GB-adapted a set of binary plasmids for A. tumefaciens-mediated plant transformation. Fast GB-engineering of several multigene T-DNAs, including two alternative modules made of five reusable devices each, and comprising a total of 19 basic parts are also described

    Uncovering tomato quantitative trait loci and candidate genes for fruit cuticular lipid composition using the Solanum pennellii introgression line population

    Full text link
    [EN] The cuticle is a specialized cell wall layer that covers the outermost surface of the epidermal cells and has important implications for fruit permeability and pathogen susceptibility. In order to decipher the genetic control of tomato fruit cuticle composition, an introgression line (IL) population derived from a biparental cross between Solanum pennellii (LA0716) and the Solanum lycopersicum cultivar M82 was used to build a first map of associated quantitative trait loci (QTLs). A total of 24 cuticular waxes and 26 cutin monomers were determined. They showed changes associated with 18 genomic regions distributed in nine chromosomes affecting 19 ILs. Out of the five main fruit cuticular components described for the wild species S. pennellii, three of them were associated with IL3.4, IL12.1, and IL7.4.1, causing an increase in n-alkanes (>= C-30), a decrease in amyrin content, and a decrease in cuticle thickness of similar to 50%, respectively. Moreover, we also found a QTL associated with increased levels of amyrins in IL3.4. In addition, we propose some candidate genes on the basis of their differential gene expression and single nucleotide polymorphism variability between the introgressed and the recurrent alleles, which will be the subjects of further investigation.Research at the IBMCP was supported by the Spanish Ministry of Education and Culture (BIO2013-42193-R) and H2020 TRADITOM (634561). AA, AG, and J-PF-M thank COST FA1106 Quality Fruit for STSM and networking activities. This work was supported by the Israel Science Foundation (ISF) personal grant to AA (grant no. 646/11). We would like to thank the Adelis Foundation, the Leona M. and Harry B. Helmsley Charitable Trust, the Jeanne and Joseph Nissim Foundation for Life Sciences, Tom and Sondra Rykoff Family Foundation Research, and the Raymond Burton Plant Genome Research Fund for supporting AA's laboratory activity. AA is the incumbent of the Peter J. Cohn Professorial Chair. We are very grateful to Prof. Dani Zamir for providing us the S. pennellii IL collection and to Prof. Antonio Heredia for his valuable advice in preparing the manuscript for publication. We would like to acknowledge the help offered by the Electron Microscopy Unit at the WIS (Israel) for the TEM sample preparation and imaging, especially Elena Kartvelishvily, Eugenia Klein, and Eyal Shimoni. Finally, we would also like to thank Calanit Raanan and Tamara Berkutzki (Department of Veterinary Resources, WIS) for their help in tissue fixation and embedding, as well as Hanna Levanony (Department of Plant Sciences, WIS) for her help in tissue staining for the light microscopy studies.Fernández Moreno, JP.; Levy-Samoha, D.; Malitsky, S.; Monforte Gilabert, AJ.; Orzáez Calatayud, DV.; Aharoni, A.; Granell Richart, A. (2017). Uncovering tomato quantitative trait loci and candidate genes for fruit cuticular lipid composition using the Solanum pennellii introgression line population. Journal of Experimental Botany. 68(11):2703-2716. https://doi.org/10.1093/jxb/erx134S27032716681

    A modular toolbox for gRNA-Cas9 genome engineering in plants based on the GoldenBraid standard

    Get PDF
    [EN] Background: The efficiency, versatility and multiplexing capacity of RNA-guided genome engineering using the CRISPR/Cas9 technology enables a variety of applications in plants, ranging from gene editing to the construction of transcriptional gene circuits, many of which depend on the technical ability to compose and transfer complex synthetic instructions into the plant cell. The engineering principles of standardization and modularity applied to DNA cloning are impacting plant genetic engineering, by increasing multigene assembly efficiency and by fostering the exchange of well-defined physical DNA parts with precise functional information. Results: Here we describe the adaptation of the RNA-guided Cas9 system to GoldenBraid (GB), a modular DNA con¿ struction framework being increasingly used in Plant Synthetic Biology. In this work, the genetic elements required for CRISPRs-based editing and transcriptional regulation were adapted to GB, and a workflow for gRNAs construction was designed and optimized. New software tools specific for CRISPRs assembly were created and incorporated to the public GB resources site. Conclusions: The functionality and the efficiency of gRNA¿Cas9 GB tools were demonstrated in Nicotiana benthamiana using transient expression assays both for gene targeted mutations and for transcriptional regulation. The availability of gRNA¿Cas9 GB toolbox will facilitate the application of CRISPR/Cas9 technology to plant genome engineeringThis work has been funded by Grant BIO2013-42193-R from Plan Nacional I + D of the Spanish Ministry of Economy and Competitiveness. Vazquez-Vilar M. is a recipient of a Junta de Ampliacion de Estudios fellowship. Bernabe-Orts J.M. is a recipient of a FPI fellowship. We want to thank Nicola J. Patron and Mark Youles for kindly providing humanCas9 and U6-26 clones. We also want to thank Eugenio Gomez for providing Arabidopsis thaliana genomic DNA and Concha Domingo for providing rice genomic DNA. We also want to thank the COST Action FA1006 for the support in the development of the software tools.Vázquez-Vilar, M.; Bernabé-Orts, JM.; Fernández Del Carmen, MA.; Ziarsolo Areitioaurtena, P.; Blanca Postigo, JM.; Granell Richart, A.; Orzáez Calatayud, DV. (2016). A modular toolbox for gRNA-Cas9 genome engineering in plants based on the GoldenBraid standard. Plant Methods. 12. https://doi.org/10.1186/s13007-016-0101-2S12Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8(11):2281–308. doi: 10.1038/nprot.2013.143 .Yang X. Applications of CRISPR-Cas9 mediated genome engineering. Mil Med Res. 2015;2:11. doi: 10.1186/s40779-015-0038-1 .Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 2013;153(4):910–8. doi: 10.1016/j.cell.2013.04.025 .Bortesi L, Fischer R. The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv. 2015;33(1):41–52. doi: 10.1016/j.biotechadv.2014.12.006 .Belhaj K, Chaparro-Garcia A, Kamoun S, Patron NJ, Nekrasov V. Editing plant genomes with CRISPR/Cas9. Curr Opin Biotechnol. 2015;32:76–84. doi: 10.1016/j.copbio.2014.11.007 .Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, et al. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol. 2013;31(8):686–8. doi: 10.1038/nbt.2650 .Gao J, Wang G, Ma S, Xie X, Wu X, Zhang X, et al. CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Mol Biol. 2015;87(1–2):99–110. doi: 10.1007/s11103-014-0263-0 .Fauser F, Schiml S, Puchta H. Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J. 2014;79(2):348–59. doi: 10.1111/tpj.12554 .Schiml S, Fauser F, Puchta H. The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant J. 2014;80(6):1139–50. doi: 10.1111/tpj.12704 .Piatek A, Ali Z, Baazim H, Li L, Abulfaraj A, Al-Shareef S, et al. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors. Plant Biotechnol J. 2015;13(4):578–89. doi: 10.1111/pbi.12284 .Beerli RR, Barbas CF 3rd. Engineering polydactyl zinc-finger transcription factors. Nat Biotechnol. 2002;20(2):135–41. doi: 10.1038/nbt0202-135 .Bogdanove AJ, Voytas DF. TAL effectors: customizable proteins for DNA targeting. Science. 2011;333(6051):1843–6. doi: 10.1126/science.1204094 .Nielsen AA, Voigt CA. Multi-input CRISPR/Cas genetic circuits that interface host regulatory networks. Mol Syst Biol. 2014;10:763. doi: 10.15252/msb.20145735 .Eeckhaut T, Lakshmanan PS, Deryckere D, Van Bockstaele E, Van Huylenbroeck J. Progress in plant protoplast research. Planta. 2013. doi: 10.1007/s00425-013-1936-7 .Mikami M, Toki S, Endo M. Comparison of CRISPR/Cas9 expression constructs for efficient targeted mutagenesis in rice. Plant Mol Biol. 2015. doi: 10.1007/s11103-015-0342-x .Patron NJ, Orzaez D, Marillonnet S, Warzecha H, Matthewman C, Youles M, et al. Standards for plant synthetic biology: a common syntax for exchange of DNA parts. New Phytol. 2015. doi: 10.1111/nph.13532 .Liu W, Stewart CN Jr. Plant synthetic biology. Trends Plant Sci. 2015;20(5):309–17. doi: 10.1016/j.tplants.2015.02.004 .Sarrion-Perdigones A, Vazquez-Vilar M, Palaci J, Castelijns B, Forment J, Ziarsolo P, et al. GoldenBraid 2.0: a comprehensive DNA assembly framework for plant synthetic biology. Plant Physiol. 2013;162(3):1618–31. doi: 10.1104/pp.113.217661 .Vazquez-Vilar M, Sarrion-Perdigones A, Ziarsolo P, Blanca J, Granell A, Orzaez D. Software-assisted stacking of gene modules using GoldenBraid 2.0 DNA-assembly framework. Methods Mol Biol. 2015;1284:399–420. doi: 10.1007/978-1-4939-2444-8_20 .Duportet X, Wroblewska L, Guye P, Li Y, Eyquem J, Rieders J, et al. A platform for rapid prototyping of synthetic gene networks in mammalian cells. Nucleic Acids Res. 2014;42(21):13440–51. doi: 10.1093/nar/gku1082 .Guo Y, Dong J, Zhou T, Auxillos J, Li T, Zhang W, et al. YeastFab: the design and construction of standard biological parts for metabolic engineering in Saccharomyces cerevisiae. Nucleic Acids Res. 2015;43(13):e88. doi: 10.1093/nar/gkv464 .Engler C, Gruetzner R, Kandzia R, Marillonnet S. Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS ONE. 2009;4(5):e5553. doi: 10.1371/journal.pone.0005553 .Sarrion-Perdigones A, Falconi EE, Zandalinas SI, Juarez P, Fernandez-del-Carmen A, Granell A, et al. GoldenBraid: an iterative cloning system for standardized assembly of reusable genetic modules. PLoS ONE. 2011;6(7):e21622. doi: 10.1371/journal.pone.0021622 .Lei Y, Lu L, Liu HY, Li S, Xing F, Chen LL. CRISPR-P: a web tool for synthetic single-guide RNA design of CRISPR-system in plants. Mol Plant. 2014;7(9):1494–6. doi: 10.1093/mp/ssu044 .Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339(6121):823–6. doi: 10.1126/science.1232033 .Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, et al. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol. 2013;31(8):688–91. doi: 10.1038/nbt.2654 .Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res. 2013;41(15):7429–37. doi: 10.1093/nar/gkt520 .Xie K, Minkenberg B, Yang Y. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci USA. 2015;112(11):3570–5. doi: 10.1073/pnas.1420294112 .Weber E, Engler C, Gruetzner R, Werner S, Marillonnet S. A modular cloning system for standardized assembly of multigene constructs. PLoS ONE. 2011;6(2):e16765. doi: 10.1371/journal.pone.0016765 .Sakuma T, Nishikawa A, Kume S, Chayama K, Yamamoto T. Multiplex genome engineering in human cells using all-in-one CRISPR/Cas9 vector system. Sci Rep. 2014;4:5400. doi: 10.1038/srep05400 .Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, et al. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant. 2015. doi: 10.1016/j.molp.2015.04.007 .Lowder LG, Zhang D, Baltes NJ, Paul JW 3rd, Tang X, Zheng X, et al. A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol. 2015;169(2):971–85. doi: 10.1104/pp.15.00636 .Nekrasov V, Staskawicz B, Weigel D, Jones JD, Kamoun S. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol. 2013;31(8):691–3. doi: 10.1038/nbt.2655 .Upadhyay SK, Kumar J, Alok A, Tuli R. RNA-guided genome editing for target gene mutations in wheat. G3. 2013;3(12):2233–8. doi: 10.1534/g3.113.008847 .Senis E, Fatouros C, Grosse S, Wiedtke E, Niopek D, Mueller AK, et al. CRISPR/Cas9-mediated genome engineering: an adeno-associated viral (AAV) vector toolbox. Biotechnol J. 2014;9(11):1402–12. doi: 10.1002/biot.201400046 .Port F, Chen HM, Lee T, Bullock SL. Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila. Proc Natl Acad Sci USA. 2014;111(29):E2967–76. doi: 10.1073/pnas.1405500111 .Xing HL, Dong L, Wang ZP, Zhang HY, Han CY, Liu B, et al. A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol. 2014;14:327. doi: 10.1186/s12870-014-0327-y

    Standards for plant synthetic biology: a common syntax for exchange of DNA parts.

    Get PDF
    Inventors in the field of mechanical and electronic engineering can access multitudes of components and, thanks to standardization, parts from different manufacturers can be used in combination with each other. The introduction of BioBrick standards for the assembly of characterized DNA sequences was a landmark in microbial engineering, shaping the field of synthetic biology. Here, we describe a standard for Type IIS restriction endonuclease-mediated assembly, defining a common syntax of 12 fusion sites to enable the facile assembly of eukaryotic transcriptional units. This standard has been developed and agreed by representatives and leaders of the international plant science and synthetic biology communities, including inventors, developers and adopters of Type IIS cloning methods. Our vision is of an extensive catalogue of standardized, characterized DNA parts that will accelerate plant bioengineering.Biotechnological and Biological Sciences Research Council (BBSRC). Grant Numbers: BB/K005952/1, BB/L02182X/1 Synthetic Biology Research Centre ‘OpenPlant’ award. Grant Number: BB/L014130/1 Spanish MINECO. Grant Number: BIO2013‐42193‐R Engineering Nitrogen Symbiosis for Africa (ENSA) The Bill & Melinda Gates Foundation US Department of Energy, Office of Biological and Environmental. Grant Number: DE‐AC02‐05CH1123 COST Action. Grant Number: FA100

    Agroinjection of Tomato Fruits. A Tool for Rapid Functional Analysis of Transgenes Directly in Fruit

    No full text
    Transient expression of foreign genes in plant tissues is a valuable tool for plant biotechnology. To shorten the time for gene functional analysis in fruits, we developed a transient methodology that could be applied to tomato (Solanum lycopersicum cv Micro Tom) fruits. It was found that injection of Agrobacterium cultures through the fruit stylar apex resulted in complete fruit infiltration. This infiltration method, named fruit agroinjection, rendered high levels of 35S Cauliflower mosaic virus-driven β-glucuronidase and yellow fluorescence protein transient expression in the fruit, with higher expression levels around the placenta and moderate levels in the pericarp. Usefulness of fruit agroinjection was assayed in three case studies: (1) the heat shock regulation of an Arabidopsis (Arabidopsis thaliana) promoter, (2) the production of recombinant IgA antibodies as an example of molecular farming, and (3) the virus-induced gene silencing of the carotene biosynthesis pathway. In all three instances, this technology was shown to be efficient as a tool for fast transgene expression in fruits
    corecore