322 research outputs found

    Matching the Spectral Energy Distribution and p Mode Oscillation Frequencies of the Rapidly Rotating Delta Scuti Star ? Ophiuchi with a 2D Rotating Stellar Model

    Get PDF
    Spectral energy distributions are computed using 2D rotating stellar models and NLTE plane parallel model atmospheres. A rotating, 2D stellar model has been found which matches the observed ultraviolet and visible spectrum of ? Oph. The SED match occurs for the interferometrically deduced surface shape and inclination, and is different from the SED produced by spherical models. The p mode oscillation frequencies in which the latitudinal variation is modelled by a linear combination of eight Legendre polynomials were computed for this model. The five highest and seven of the nine highest amplitude modes show agreement between computed axisymmetric, equatorially symmetric mode frequencies and the mode frequencies observed by MOST to within the observational error. Including nonaxisymmetric modes up through |m| = 2 and allowing the possibility that the eight lowest amplitude modes could be produced by modes which are not equatorially symmetric produces matches for 24 out of the 35 MOST modes to within the observational error and another eight modes to within twice the observational error. The remaining three observed modes can be fit within 4.2 times the observational error, but even these may be fit to within the observational error if the criteria for computed modes are expanded.Comment: Accepted by Ap

    Transferring Axial Molecular Chirality Through a Sequence of On-Surface Reactions

    Full text link
    Fine management of chiral processes on solid surfaces has progressed over the years, yet still faces the need for the controlled and selective production of advanced chiral materials. Here, we report on the use of enantiomerically enriched molecular building blocks to demonstrate the transmission of their intrinsic chirality along a sequence of on-surface reactions. Triggered by thermal annealing, the on-surface reac-tions induced in this experiment involve firstly the coupling of the chiral reactants into chiral polymers and subsequently their transformation into planar prochiral graphene nanoribbons. Our study reveals that the axial chirality of the reactant is not only transferred to the polymers, but also to the planar chirality of the graphene nanoribbon end products. Such chirality transfer consequently allows, starting from ad-equate enantioenriched reactants, for the controlled production of chiral and prochiral organic nanoarchi-tectures with pre-defined handedness

    Directed self-assembly of trimeric DNA-bindingchiral miniprotein helicates

    Get PDF
    We propose that peptides are highly versatile platforms for the precise design of supramolecular metal architectures, and particularly, for the controlled assembly of helicates. In this context, we show that the bacteriophage T4 Fibritin foldon (T4Ff) can been engineered on its N-terminus with metal-chelating 2,2′-bipyridine units that stereoselectively assemble in the presence of Fe(II) into parallel, three-stranded peptide helicates with preferred helical orientation. Modeling studies support the proposed self-assembly and the stability of the final helicate. Furthermore, we show that these designed mini-metalloproteins selectively recognize three-way DNA junctions over double-stranded DNAFinancial support from the Spanish grants CTQ2015-70698-R, CTQ2017-87889-P, the Xunta de Galicia (Centro singular de investigación de Galicia accreditation 2016–2019, ED431G/09) and the European Union (European Regional Development Fund - ERDF), is gratefully acknowledged. JG-G, thanks the Spanish MINECO for his FPI fellowship, GB thanks the ERC for her EU METALIC-II 2013-2442/001-001-EMA2 mobility scheme fellowship, and GS. thanks the Universitat Autònoma de Barcelona for its support to his PhD. J-DM and GS are thankful for the support given by the Generalitat de Catalunya 2017SGR1323. Support of COST Action CM1306 is kindly acknowledged. MEV, also wish to acknowledge the generous support by the Fundación Asociación Española Contra el Cáncer AECC (IDEAS197VAZQ grant)S

    The LKB1 Tumor Suppressor as a Biomarker in Mouse and Human Tissues

    Get PDF
    Germline mutations in the LKB1 gene (also known as STK11) cause the Peutz-Jeghers Syndrome, and somatic loss of LKB1 has emerged as causal event in a wide range of human malignancies, including melanoma, lung cancer, and cervical cancer. The LKB1 protein is a serine-threonine kinase that phosphorylates AMP-activated protein kinase (AMPK) and other downstream targets. Conditional knockout studies in mouse models have consistently shown that LKB1 loss promotes a highly-metastatic phenotype in diverse tissues, and human studies have demonstrated a strong association between LKB1 inactivation and tumor recurrence. Furthermore, LKB1 deficiency confers sensitivity to distinct classes of anticancer drugs. The ability to reliably identify LKB1-deficient tumors is thus likely to have important prognostic and predictive implications. Previous research studies have employed polyclonal antibodies with limited success, and there is no widely-employed immunohistochemical assay for LKB1. Here we report an assay based on a rabbit monoclonal antibody that can reliably detect endogenous LKB1 protein (and its absence) in mouse and human formalin-fixed, paraffin-embedded tissues. LKB1 protein levels determined through this assay correlated strongly with AMPK phosphorylation both in mouse and human tumors, and with mRNA levels in human tumors. Our studies fully validate this immunohistochemical assay for LKB1 in paraffin-embedded formalin tissue sections. This assay should be broadly useful for research studies employing mouse models and also for the development of human tissue-based assays for LKB1 in diverse clinical settings

    Survival of spin state in magnetic porphyrins contacted by graphene nanoribbons

    Get PDF
    We report on the construction and magnetic characterization of a fully functional hybrid molecular system composed of a single magnetic porphyrin molecule bonded to graphene nanoribbons with atomically precise contacts. We use on-surface synthesis to direct the hybrid creation by combining two molecular precursors on a gold surface. High-resolution imaging with a scanning tunneling microscope finds that the porphyrin core fuses into the graphene nanoribbons through the formation of new carbon rings at chemically predefined positions. These ensure the stability of the hybrid and the extension of the conjugated character of the ribbon into the molecule. By means of inelastic tunneling spectroscopy, we prove the survival of the magnetic functionality of the contacted porphyrin. The molecular spin appears unaffected by the graphenoid electrodes, and we simply observe that the magnetic anisotropy appears modified depending on the precise structure of the contacts.We acknowledge the financial support from Spanish Agencia Estatal de Investigación (AEI) (project nos. MAT2016-78293-C6 and FIS2015-62538-ERC, and the Maria de Maeztu Units of Excellence Programme MDM-2016-0618), the Basque Government (Department Industry, grant no. PI-2015-1-42), the European project PAMS (610446), the Xunta de Galicia (Centro singular de investigación de Galicia accreditation 2016 to 2019, ED431G/09), the European Research Council (grant agreement no. 635919), and the European Regional Development FundS

    A review of ureteral injuries after external trauma

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Ureteral trauma is rare, accounting for less than 1% of all urologic traumas. However, a missed ureteral injury can result in significant morbidity and mortality. The purpose of this article is to review the literature since 1961 with the primary objective to present the largest medical literature review, to date, regarding ureteral trauma. Several anatomic and physiologic considerations are paramount regarding ureteral injuries management.</p> <p>Literature review</p> <p>Eighty-one articles pertaining to traumatic ureteral injuries were reviewed. Data from these studies were compiled and analyzed. The majority of the study population was young males. The proximal ureter was the most frequently injured portion. Associated injuries were present in 90.4% of patients. Admission urinalysis demonstrated hematuria in only 44.4% patients. Intravenous ureterogram (IVU) failed to diagnose ureteral injuries either upon admission or in the operating room in 42.8% of cases. Ureteroureterostomy, with or without indwelling stent, was the surgical procedure of choice for both trauma surgeons and urologists (59%). Complications occurred in 36.2% of cases. The mortality rate was 17%.</p> <p>Conclusion</p> <p>The mechanism for ureteral injuries in adults is more commonly penetrating than blunt. The upper third of the ureter is more often injured than the middle and lower thirds. Associated injuries are frequently present. CT scan and retrograde pyelography accurately identify ureteral injuries when performed together. Ureteroureterostomy, with or without indwelling stent, is the surgical procedure of choice of both trauma surgeons and urologists alike. Delay in diagnosis is correlated with a poor prognosis.</p

    Unraveling the electronic structure of narrow atomically precise chiral graphene nanoribbons

    Full text link
    This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposesRecent advances in graphene-nanoribbon-based research have demonstrated the controlled synthesis of chiral graphene nanoribbons (chGNRs) with atomic precision using strategies of on-surface chemistry. However, their electronic characterization, including typical figures of merit like band gap or frontier band's effective mass, has not yet been reported. We provide a detailed characterization of (3,1)-chGNRs on Au(111). The structure and epitaxy, as well as the electronic band structure of the ribbons, are analyzed by means of scanning tunneling microscopy and spectroscopy, angle-resolved photoemission, and density functional theoryThe project leading to this publication has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 635919), from the Spanish Ministry of Economy, Industry and Competitiveness (MINECO, grant nos. MAT2016-78293-C6, FIS2015-62538-ERC), from the Basque Government (grant nos. IT-621-13, PI-2015-1-42, PI-2016-1-0027), from the European Commission in FP7 FET-ICT “Planar Atomic and Molecular Scale Devices” (PAMS) project (contract no. 610446), from the Xunta de Galicia (Centro singular de investigación de Galicia accreditation 2016−2019, ED431G/09), and from the European Regional Development Fund (ERDF
    corecore