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ABSTRACT

Spectral energy distributions are computed using two-dimensional (2D) rotating stellar models and non-LTE plane-
parallel model atmospheres. A rotating, 2D stellar model has been found that matches the observed ultraviolet
and visible spectrum of α Oph. The SED match occurs for the interferometrically deduced surface shape and
inclination, and is different from the SED produced by spherical models. The p-mode oscillation frequencies in
which the latitudinal variation is modeled by a linear combination of eight Legendre polynomials were computed
for this model. The five highest and seven of the nine highest amplitude modes show agreement between computed
axisymmetric, equatorially symmetric mode frequencies and the mode frequencies observed by the Microvariability
and Oscillations of Stars satellite (MOST) to within the observational error. Including nonaxisymmetric modes up
through |m| = 2, and allowing for the possibility that the eight lowest amplitude modes could be produced by modes
that are not equatorially symmetric, matches for 24 out of the 35 MOST modes to within the observational error
and another eight modes to within twice the observational error. The remaining three observed modes can be fitted
within 4.2 times the observational error, but even these may be fitted to within the observational error if the criteria
for computed modes are expanded.

Key words: asteroseismology – stars: atmospheres – stars: individual (alpha Ophiuchi) – stars: variables: delta
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1. INTRODUCTION

While much progress has been made in understanding the
structure and evolution of stars over the last 50 years, most of
the gains have been for spherical stars. Models which contain a
significant nonspherical component, such as rotating stars, are
much less well understood. Part of this must be put down to the
increased degrees of freedom rotation introduces, both into the
models (angular momemtum distribution, possible mixing) and
into the observations (the effects of the latitudinal surface vari-
ations and the inclination between the observer and the rotation
axis in converting the observed effective temperature and lumi-
nosity into properties physically associated with the star). It has
been hoped that the combination of asteroseismology and inter-
ferometry would allow more progress in the understanding of
rotating stars (Cunha et al. 2007), but to date progress has been
relatively slow. An early attempt to determine the shape of the
rapidly rotating star Achenar (Domiciano de Souza et al. 2003)
was clouded by the possibility that a circumstellar envelope was
contributing to the oblateness measured by the interferometry
as well as the stellar surface (Vinicius et al. 2006; Kanaan et al.
2008; Carcofi et al. 2008; Kervella et al. 2009), but it did lead
to some attempts which successfully reproduced the observed
shape (Jackson et al. 2004).

A more promising candidate, α Oph, has recently surfaced.
It has been observed interferometrically with the CHARA
array (Zhao et al. 2009) and asteroseismologically with the
Microvariability and Oscillations of Stars satellite (MOST;
Monnier et al. 2010). It also helps that the star is so close that
it has a well-determined parallax (e.g., Gatewood 2005) and
virtually no reddening. We summarize the key observational
parameters in Table 1, the mass coming from a recent analysis
of the binary system of which the star of interest in this work is
the primary (Hinkley et al. 2011).

We wish to make two-dimensional (2D) rotating models of
α Oph. With these models and some of the data from Table 1
(listed as “assumed”) we will compute the other data from Ta-
ble 1, the spectral energy distribution (SED) from the ultraviolet
through the visible, and the oscillation frequencies for compar-
ison with their observed counterparts. The computed surface of
the 2D finite difference model is discretized (i.e., a zone bound-
ary of the 2D mesh is used to define the surface location at each
latitude), so the observed and assumed ratio of the polar to the
equatorial surface radius are not exactly the same. However, the
assumed values are within the error of the observed values both
for the polar-to-equatorial ratio and for the mass.

The computation of multi-dimensional structural information
for (at least conservatively) rotating models with reasonable
physical input has been possible for some time (e.g., Clement
1978, 1979; Deupree 1990, 1995, 2011a; Jackson et al. 2005;
Espinosa Lara 2010). This usually involves imposing a composi-
tion profile and a rotation profile and then solving for the model
structure. However, performing multi-dimensional simulations
of rotating stars in which the angular momentum and com-
position are redistributed during evolution remains incomplete
(e.g., Tassoul & Tassoul 1982, 1995; Espinosa Lara & Rieutord
2007; Rieutord & Espinosa Lara 2009). The need to compute
oscillation frequencies by methods which allow the latitudi-
nal variation of the eigenfunctions to be determined by a sum
of spherical harmonics was first outlined by Berthomieu et al.
(1978) with pioneering work developed by Lee & Saio (1986),
Lee & Baraffe (1995), and Aprilia et al. (2011). This work has
been extended (e.g., Clement 1998; Lignières et al. 2006; Reese
et al. 2006, 2008; Lovekin et al. 2009) to include realistic in-
put models of rotating stars (Lovekin & Deupree 2008; Reese
et al. 2009). These approaches give reasonably reliable results,
although gains are still possible. This more complex represen-
tation of the latitudinal variation does make mode identification
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Table 1
Comparison of Observed and Computed Properties

Property Observed Value Computed (or Assumed) Value

V0 2.081,2,3 2.074
(B − V)0 0.151,2,3 0.158
(U − B)0 0.101,2,3 0.124
Rpole/Req 0.8364 0.838 assumed
Distance (pc) 14.685 14.6
Veq (km s−1) 210.–240.6,7,8,9 236.
Inclination (deg) 87.54 87.5 assumed
Mass (M�) 2.410 2.25 (assumed)

References. (1) Johnson & Harris 1954; (2) Johnson & Knuckles 1957;
(3) Johnson et al. 1966; (4) Monnier et al. 2010; (5) Gatewood 2005;
(6) Bernacca & Perinotto 1970; (7) Uesuga & Fukuda 1970; (8) Abt & Morrell
1995; (9) Royer et al. 2002; (10) Hinkley et al. 2011.

more complicated, as does the fact that the frequency splitting
for the nonaxisymmetric modes is both large and nonlinear (e.g.,
Suárez et al. 2010; Deupree & Beslin 2010).

To obtain the SED we follow the work of Lovekin et al.
(2006) and Gillich et al. (2008), who used 2D rotating stellar
structure models to provide the latitudinal surface temperature
and effective gravity variation. This was used with PHOENIX
(Hauschildt & Baron 1999) non-LTE (NLTE) plane-parallel
model atmospheres to compute the flux as a weighted sum of
the radiative intensities from the surface in the direction of the
observer, integrated over the visible surface of the model. This
method of determining the observed flux is the same in concept
as used by other researchers (e.g., Slettebak et al. 1980; Linnell
& Hubeny 1994; Frémat et al. 2005; Dall & Sbordone 2011).

The goal of this paper is to produce a 2D model of α
Oph which has the observed oblateness and inclination (both
assumed), matches the observed SED when placed at the
proper distance, and matches the observed oscillation modes.
In the next section, we describe how the 2D models were
generated and refined to fit the observed SED. We also present
some details of the model atmosphere calculations. Section 3
computes oscillation frequencies for the p modes for the best-fit
model to the SED. The final section reviews the results and the
assumptions made.

2. 2D STELLAR MODELS, NLTE MODEL
ATMOSPHERES, AND THE OBSERVED SPECTRAL

ENERGY DISTRIBUTION

In order to compute the SED of a rotating star we must first
know the latitudinal variation of the surface temperature and
effective gravity. Starting with the model V240, which has the
observed oblateness, generated by Deupree (2011b), we use
the 2D stellar evolution and hydrodynamics code ROTORC
(Deupree 1990, 1995) to make models which provide this
information. This code allows us to determine the full 2D
model structure for a rotating stellar model. Model V240 was
constructed with uniform rotation, which we retain for all the
models in this work. Comparison between the SED of model
V240 seen at an inclination of 87.◦5 and the observed SED in the
visual and ultraviolet indicated that this model has too high an
effective temperature. New models were obtained by performing
a few evolutionary time steps (thus moving to cooler effective
temperatures), which change the composition in the convective
core and the surrounding area as the convective core shrinks.
During this “evolution” we hold the rotational velocity and the
surface location constant. The surface rotation velocities are no

longer those required for an equipotential surface to match the
current (desired) surface shape, so the uniform rotation rate was
changed and the model at the end of this evolution sequence
reconverged until an equipotential surface matches the desired
surface shape. Only a few evolutionary times steps were done at
a time so that the change in the surface equatorial velocity was
only a few km s−1. The entire process is repeated until there
are a sufficiently large number of models with composition
profiles that look like those at various stages of an evolutionary
sequence. From an observational point of view, these models
form a sequence of decreasing effective temperature. It should be
noted, however, that these are not strictly speaking evolutionary
sequences because we have artificially constrained the rotation
during the evolution in a way that does not conserve angular
momentum. From the point of view of creating a 2D stellar
model that can be compared with data, not having obtained the
model by a direct evolutionary sequence calculation is irrelevant.

Once we have a 2D model we compute as a function
of wavelength the flux one would observe outside Earth’s
atmosphere for a star at a specified distance. This flux is a
weighted integral of the intensity integrated over the visible
surface of the star (Lovekin et al. 2006). The intensities in the
direction of the observer are obtained from interpolation through
a grid of plane-parallel model atmospheres, using the geometry
to indicate the direction to the observer from the local vertical.

The model atmospheres are computed with the PHOENIX
code (Hauschildt & Baron 1999). In addition to the composition,
the input requirements for the plane-parallel atmospheres used
here are the effective temperature and the effective gravity. The
composition was taken to be X = 0.7, Z = 0.02. One of the
main advantages of PHOENIX is the capability to include a
large number of energy levels for several ionization stages of
many elements in NLTE (Short et al. 1999). The elements and
ionization stages included in NLTE are H, He(i–ii), Li(i–ii),
C(i–iii), N(i–iii), O(i–iii), Ne(i), Na(i–ii), Mg(i–iii), Al(i–iv),
Si(i–iv), P(i–iv), S(i–iv), K(i–iii), Ca(i–iii), and Fe(i–iv). The
number of energy levels and line transitions for the ionization
stages of the elements included are the same as in Table 1
of Gillich et al. (2008). For those species treated in NLTE,
only energy levels connected by transitions for which log(gf ) is
greater than −3 in the PHOENIX line list are included in the
NLTE statistical equilibrium equations. All other transitions for
that species are calculated with occupation numbers set equal to
the Boltzmann distribution value with the excitation temperature
equal to the local kinetic temperature, multiplied by the NLTE
departure coefficient for the ground state in the next higher
ionization stage.

The energy level and bound–bound transition atomic data
have been taken from Kurucz (1994) and Kurucz & Bell
(1995). The resonance-averaged Opacity Project (Seaton et al.
1994) data of Bautista et al. (1998) have been used for the
ground-state photoionization cross sections of Li (i–ii), C (i–iv),
N (i–vi), O (i–vi), Ne (i), Na (i–vi), Al (i–vi), Si (i–vi),
S (i–vi), Ca (i–vii), and Fe (i–vi). For the ground states of
all stages of P and Ti and for the excited states of all species,
we used the cross-sectional data previously incorporated into
PHOENIX from either Reilman & Manson (1979) or from the
compilation of Mathisen (1984). The coupling among all bound
levels by electronic collisions is calculated using cross sections
calculated from the formulae given by Allen (1973). The cross
sections of ionizing collisions with electrons are calculated from
the formula of Drawin (1961). Further details are provided by
Short et al. (1999).
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The model atmosphere grid covers the temperature range
from 7500 K to 11,000 K in 250 K steps. The effective gravity
range is 3.0–4.666 in 0.333 steps. The wavelength range starts
at 600 Å with steps of 0.005 Å. The step increases in seven
jumps, ending with a step 0.08 Å. This step size assures that
spectral lines are sufficiently sampled. The final wavelength is
20000 Å. The Doppler effect is not included in these particular
calculations because we then filter both the observed and
computed flux spectra with a 50 Å wide rolling boxcar filter
to smooth out the effect of lines in the SED.

We have fit several spherical uniform effective temperature
models and several rotating models to the observed data in both
the visible and the ultraviolet. The data in the visible region
were obtained from data set L1985BURN, file 01398 of the
HyperLeda database (Paturel et al. 2003) and the ultraviolet data
from data sets SWP17411 and LWR05927 in the IUE database
maintained by STScI. The observed data are what would be
observed at the Earth or above the Earth’s atmosphere in the
case of the ultraviolet data. The best spherical model match to
the visual data has an effective temperature of 7875 K. This is
shown in Figure 1. The nonrotating, plane-parallel atmosphere
models do not come from an evolution sequence, so we do not
have a radius automatically associated with them. We thus only
scale the computed flux to match the data in the visible region
as closely as possible. In particular, we force the plane-parallel
model flux to match the observed flux at 5750 Å and compare
the observed and model fluxes at 4050 Å, an interval between
4400 Å and 4470 Å, and 6950 Å. The average error magnitude
is about 1% for the 7785 K and 8000 K spherical models, with
the lower temperature model being slightly better. Models with
effective temperatures of 7750 K and 8250 K have average errors
about a factor of three to five higher depending on the precise
measurement. These models also display the change in SED
slope with temperature one expects, making them different from
the observed slope. The computed flux for the 7875 K model
to the blue of the Balmer jump and between 1500 and 3000 Å
is lower than that observed to varying degrees. Comparisons of
the SEDs for spherical models having effective temperatures of
7750 K and 8000 K with the ultraviolet data just to the blue
of the Balmer jump are about the same, and all three spherical
models have fluxes smaller than that observed. To quantify the
comparison in the ultraviolet, we computed the magnitude of
the difference between the observed flux and the computed
fluxes every 10 Å and then calculated the average of this error
magnitude for each of the two IUE data sets. The minimum
average error magnitude for all of the plane parallel atmospheres
in both IUE wavelength intervals was for the 7875 K effective
temperature model, with the 8000 K model being more than
twice this minimum and other effective temperature models,
both higher and lower, having appreciably higher average error
magnitudes. We therefore restrict further discussion related to
the SEDs to the 7785 K effective temperature model. We also
note that the computed fluxes in the core of the strong hydrogen
lines are appreciably deeper than those observed for all models,
both rotating and not.

The rotating model which best fits the flux an observer at
the observed inclination would see has the properties of M =
2.25 M�, Xc = 0.25, Req = 3.006 R�, Rpole = 0.838 Req, Veq =
236 km s−1, Teq = 7735 K, and Tpole = 9135 K. The computed
flux for this model in the direction of the observed inclination
is compared with the observed flux in Figure 2. The first point
to make is that the computed flux here is not arbitrarily scaled
but generated assuming a distance to α Oph of 14.6 pc, close

to the most recent determination and within the error estimate
(Gatewood 2005). The luminosity of the model is 33.45 L�,
while the “observed luminosity” is 23.1 L�. This observed
luminosity is obtained by integrating this computed flux over
all wavelengths and multiplying the result by 4πd2, where d
is the distance to the star. The integration over wavelength
includes the assumption of a Rayleigh–Jeans tail from the end
of the calculated wavelengths to infinite wavelength. We have
computed the colors for some of the Johnson & Harris (1954)
filters and present the results in Table 1. We performed a single-
point calibration with a NLTE PHOENIX model of Vega using
the parameters of Castelli & Kurucz (1994) as one of the steps
to determine the V magnitude and color indices listed in Table 1
for the rotating model of α Oph.

Generally speaking, the fit to the SED for this rotating model,
shown in Figure 2, is overall better than that for the spherical
models. Specifically, the fit to the data in the visible is about the
same as that of the 7875 K and 8000 K effective temperature
models (1%), the fit to the blue of the Balmer jump is better,
although still not perfect, and the fit between 2000 and 3000 Å
is much better than any of the spherical models show. The
average error magnitude for this rotating model was the same
as for the 7875 K model in the far-ultraviolet data set, although
comparison of Figures 1 and 2 shows that neither fits the SED
very well, but in different ways, over the whole region. We
note that the far-ultraviolet data set does not have the prominent
peak at about 1600 Å that all spherical models and the rotating
model possess. This plays a role in the far-ultraviolet error
comparison, making no model particularly good in at least part
of this wavelength region.

The rotating model SED agrees much better than that of
the 7875 K spherical model for the other IUE ultraviolet
data set. The average error magnitude of the rotating model
is only 54% of that for the 7875 K spherical model. This
better agreement with the observations for the rotating model
SED provides some validation both for the rotating models
themselves and to the numerical approach of integrating the
localized surface temperatures and gravities over the surface to
obtain the observed flux.

3. OSCILLATION MODE SPECTRUM

We have computed the oscillation mode spectrum for the best-
fit rotating model found by matching the SED in the previous
section. We calculate the linear adiabatic oscillation frequencies
with the NRO code (Clement 1998) using a sum of eight
spherical harmonics (hereinafter, basis functions) to describe
the latitudinal variation of the linear perturbations. We believe
that this will provide reasonable accuracies for the individual
computed mode frequencies, but we cannot expect them to be as
accurate as the observed mode frequencies. Before presenting
the results, we must think about the definition of a “good fit”
between the model and observed frequencies. As shown by
Deupree (2011b), the inclusion of a sizable number of basis
functions provides so many modes that it is difficult not to
match an observed frequency with a computed one, at least if a
sufficient range of longitudinal modes is allowed. This is clearly
unsatisfying, so we must provide some other criteria to define a
satisfactory solution. While these may not be strictly speaking
correct in all cases, they are not unreasonable.

One way in which a criterion for a mode to have a reasonable
prospect of being observable is to attempt to trace a given mode
through progressively more slowly rotating models back to a
specific mode of given n, �, and m in the nonrotating model
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Figure 1. (a) Spectral energy distribution for a spherical stellar model with Teff = 7875 K and log geff = 3.67 (solid curve) compared to that observed (dashed curves
and circles for selected points) for α Oph. The agreement in the visual region in essence determines the effective temperature. Note the disagreement just to the blue
of the Balmer jump. (b) Spectral energy distribution in the ultraviolet for the spherical model in panel (a) (solid curve) and the observations (dashed curves). While
the general agreement in the ultraviolet is fair, over much of the interval the data fluxes are higher than the computed model fluxes.

(A color version of this figure is available in the online journal.)
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Figure 2. (a) Spectral energy distribution seen at an inclination of 87.◦5 for the rapidly rotating model discussed in the text (solid curve) and the observed SED (dashed
curves and circles for selected points) for α Oph. This model also provides a good fit to the visual SED although the equatorial effective temperature is about 140 K
lower than the effective temperature of the spherical model in Figure 1. (b) The ultraviolet spectral energy distribution seen at an inclination of 87.◦5 for the rapidly
rotating model discussed in the text (solid curve) and the observations for α Oph (dashed curves). In comparison with panel (b), note that the rotating model SED fits
the observations in the ultraviolet and to the blue of the Balmer jump appreciably better than does the spherical model SED.

(A color version of this figure is available in the online journal.)
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Table 2
Comparison of Observed and Axisymmetric Computed Frequencies

for Highest Amplitude Modes

Observed Frequency Half-amplitude Computed Frequency Difference/
(cycles day−1) (mmag) (cycles day−1) Observational

Uncertainty

18.668 .655 18.6724 0.259
16.174 .411 16.1700 0.235
16.124 .349 16.1202 0.224
22.205 .299 22.2226 1.037
21.713 .282 21.7617 2.865
25.416 .272 25.4323 0.956
23.631 .223 23.7062 4.422
20.512 .210 20.5014 0.624
29.304 .172 29.3168 0.751

(e.g., Lignières et al. 2006), with the expectation that low � and
m values will correspond to observable modes. Besides being
difficult once the rotation rate is sufficiently large, the latitudinal
profile of the perturbation can change considerably from the
nonrotating model to one that is rotating as rapidly as α Oph.
Thus, the connection between � for the mode in the nonrotating
model and the latitudinal profile in the rapidly rotating model
may not be as tight as necessary for the process to successfully
identify observable modes. An alternative, which we adopt
here for the highest amplitude modes, is to examine whether
the latitudinal variation of the radial perturbation is consistent
with being an observable mode at a reasonable amplitude. The
difficulty in examining the longitudinal variation is that, while
we believe that the oscillation frequencies are well determined,
the corresponding eigenfunctions are less so. While having
a certain latitudinal variation may be helpful for the highest
amplitude modes, the possible latitudinal cancellation may be
considerably more gray for these modes than for pure Legendre
polynomial modes, and we do not feel that this approach can be
applied for the lower amplitude modes.

Here we shall be concerned only with p modes, rather
arbitrarily limiting these to modes above 15 cycles day−1. This
provides 35 observed modes out of the original 55 observed
by MOST. One reason for doing this is that we have assumed
that the rotation is uniform, something probably not true in
the core and which could affect the g-mode frequencies. The
first assumption we make about the nature of the pulsation is
that the highest amplitude modes are axisymmetric modes that
are also symmetric about the equator. This latter assumption is
based on the fact that α Oph is observed essentially equator-on
so that non-equatorially symmetric (or odd parity) perturbations
would largely cancel out. The limitation to axisymmetric modes
is less defensible because it is incomplete. It assumes that
modes with no longitudinal nodes will have less cancellation
than modes with longitudinal nodes, but we also need to show
that the surface latitudinal variation produces only limited
cancellation. The quality of the latitudinal surface variation of
the eigenfunction can be assessed by comparing the latitudinal
profiles of the same mode when computed with six or eight
basis functions, but this is still not a guarantee that they are
reliable. Table 2 provides a list of the nine highest amplitude
modes in our selected set detected by MOST (Monnier et al.
2010), along with our computed frequency, and the difference
between the computed and observed frequencies in units of
the 0.017 cycles day−1 quoted observational uncertainty. The
table shows that all of the four highest amplitude modes are
matched in frequency (almost) within the observational error.
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Figure 3. The surface latitudinal variation of the radial perturbation for the
axisymmetric eigenfunctions that match the oscillation frequencies for modes
2, 3, 4, and 8 as given in Table 2. The linear perturbations are scaled to be unity
at 80◦ colatitude. The dashed lines indicate “0” for each of the four modes.
The small number of latitudinal nodes for each mode should allow them to be
observable at a reasonable amplitude.

Three of the next five highest amplitude modes match within
the observational error as well. Only seven more computed
axisymmetric modes match the next 18 highest amplitude modes
(amplitudes all � 0.1 mmag), and no computed axisymmetric
modes match the frequencies of the remaining eight lowest
amplitude modes.

We now turn to the latitudinal surface variation of the seven
axisymmetric modes that match the observed frequencies. Four
of these, modes 2, 3, 4, and 8, present no difficulties. The
latitudinal variation of these modes is shown in Figure 3.
The relative amplitude near the equator is large in all cases.
Mode 2 has two nodes, but they are both at high latitude and
the amplitude of the oscillation between the two nodes is small,
limiting the cancellation effects. Modes 3 and 8 have only one
node, and mode 4 has none. One would expect these to have
relatively large observed amplitudes compared to modes with
many nodes, and they would appear to do that. The surface
latitudinal variation of these modes is not appreciably changed
by decreasing the number of basis functions to six. The surface
latitudinal variation for the axisymmetric approximations to
modes 1, 6, and 9 present more cancellation, as shown in
Figure 4. The frequencies of modes 1, 5, and 6 can be matched
by modes with latitudinal surface variations similar to those in
Figure 3 with values of m of −3, 1, and −1, respectively. We
have found no mode at all with a frequency close to that for
mode 7, while mode 9 can be matched by a mode with m = −3,
although the horizontal variation is not as obviously favorable as
those in Figure 3. This perhaps should not be surprising given its
lower amplitude. Noting that this analysis makes no allowance
for the theoretical uncertainty of the mode frequency, we regard
such agreement for the seven of the nine high amplitude modes
as acceptable.

With the success in matching a number of the high amplitude
modes which were both axisymmetric and equatorially symmet-
ric (or even parity), we next examined the possibility that the
lowest amplitude modes might also be odd parity axisymmetric
modes. Here we found that two of the four lowest amplitude
observed mode frequencies could be matched by these modes.
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Figure 4. The surface latitudinal variation of the radial perturbation for the
axisymmetric eigenfunctions that match the oscillation frequencies for modes
1, 6, and 9 as given in Table 2. The linear perturbations are scaled to be unity at
10◦ colatitude. The number of nodes and their placement suggest that it might be
difficult to observe these modes at the amplitudes the observed modes display.

Next we extended the search to include nonaxisymmetric
even parity modes having |m| � 2 to examine the remaining p
modes. The quantity m, half of the number of longitudinal nodes,
remains a valid quantum number because of axial symmetry in
our 2D rotating models. This does produce a large number of
modes, but not as many as computed by Deupree (2011b) who
allowed up to |m| = 4. Finally, we computed nonaxisymmetric
odd parity modes with |m| � 2 to attempt to match the other
lowest amplitude modes that were not matched with m = 0.

The frequency match results for all 35 observed modes are
shown in order of decreasing amplitude in Table 3. The table
includes a number to identify the mode, the observed frequency
and amplitude, the computed frequency, the magnitude of
the frequency difference in units of the observed frequency
uncertainty, and the m value of the computed mode which
generated the matching frequency. The designation “odd” is
used to indicate odd parity modes. In a few cases more than
one computed mode, each with a different value of m, may
match the observed mode to within the observational error.
Our approach has been to select the mode with the lowest
magnitude of m in this case, even if other modes may have
had a smaller difference between the observed and computed
frequencies. For modes whose smallest difference is outside
the observational uncertainty, we selected the mode with the
smallest difference. The table shows that 23 of the 35 modes
were matched to within 1.1 times the observational uncertainty.
A further five modes (modes 5, 6, 12, 14, and 15) were matched
to within 1.5 times the observational frequency uncertainty,
and four more (modes 10, 18, 28, and 31) were matched if
the range is extended to twice the observational frequency
uncertainty. While subjective, we believe that all of these
could be considered reasonable fits given the computed mode
uncertainty as well as the observational uncertainty. This leaves
only three observed modes (modes 7, 16, and 35) that are
not reasonably well matched (i.e., frequency difference outside
twice the observational uncertainty) by computed modes. Of
these the most worrisome is mode 7, which has fairly large
amplitude.

Even these three modes can be matched by expanding the
computed mode criteria. Mode 7 can be matched to within
the observational error by an odd parity mode with m = 2,
even though its high amplitude makes this fairly unattractive.
Mode 16 can also be matched to within the observational error by
an odd parity mode with m =−2, and its amplitude is sufficiently
low that this may not be unreasonable. The lowest amplitude
mode, mode 35, could not be matched by any mode with |m| � 2,
but it can be matched to within the observational error with an
even parity m = 3 mode. Given its low amplitude, this may
not be absurd. Thus, it is not impossible to match the mode
frequencies reasonably successfully, but given the density of
modes, this does not prove that this model is the correct model
of α Oph.

We present the echelle diagram for all of these computed
modes (except the odd parity mode matching mode 7) in
Figure 5. Echelle diagrams are usually used to show patterns
in the frequency spectrum, and of course here there is no simple
pattern. However, the diagram also gives a representation of
the density of computed modes at various frequencies and how
close those frequencies are to the observed frequencies for this
model. The figure includes all computed modes for |m| � 2,
all the odd parity computed modes listed in Table 3, and the
m = 3 computed mode matching the lowest amplitude observed
mode. The large separation of 3.78 cycles day−1 was found
by computing axisymmetric modes to frequencies of about
60 cycles day−1.

All of the computed modes in Figure 5 have a comparatively
small number of radial nodes. While there is some variation, the
axisymmetric modes in the lowest part of Figure 5 have only
three or four radial nodes (it should be noted that the number of
radial nodes for a model rotating this rapidly may be a function
of latitude; e.g., Clement 1998). Those at the highest frequencies
of Figure 5 have 10 or 11 radial nodes. The frequency shifts for
nonaxisymmetric modes are large and nonuniform (Suárez et al.
2010; Deupree & Beslin 2010) for models rotating this rapidly
so that any given horizontal line in Figure 5 may contain modes
with values of n differing by two or three.

The risky nature of using the latitudinal variation to correlate
with amplitude may be seen by comparing modes 4 and 23. The
latitudinal variation is the same for both (see Figure 3), so they
clearly have the same “�.” Mode 4 has six radial nodes in the
pressure perturbation in the equatorial direction and four nodes
along the polar axis, and mode 23 has one more node at both
the equator and pole directions. Thinking of these two modes
as having “n, �eff , and m” quantum numbers, we see they differ
only by Δn = 1, while the observed amplitude ratio is almost a
factor of three.

4. DISCUSSION

We have shown that we can match both the observed SED
and the p-mode oscillation frequencies of α Oph reasonably well
with a uniformly rotating 2.25 M� model having a surface equa-
torial rotational velocity of 236 km s−1 and a central hydrogen
abundance of 0.25. While not perfect, the agreement between
the observed and computed SED and between the higher am-
plitude observed modes and computed modes with reasonable
latitudinal variation provides perhaps the strongest evidence that
this model provides a reasonable approximation to the star. The
most glaring exception is the seventh-highest-amplitude mode
at 23.63 cycles day−1, which cannot be matched to within four
times the observed error with the most reasonable mode con-
straints, but can be matched within the observed error if we

7
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Table 3
Comparison of Computed and Observed Mode Frequencies for All Modes

Mode ID Observed Mode Frequency Half-amplitude Computed Mode Frequency |Δω|/σ obs Mode m
(cycles day−1) (mmag) (cycles day−1) Value

1 18.668 0.655 18.6670 .059 m = −3
2 16.174 0.411 16.1700 .235 m = 0
3 16.124 0.349 16.1202 .224 m = 0
4 22.205 0.299 22.2226 1.037 m = 0
5 21.713 0.282 21.7355 1.325 m = 1
6 25.416 0.272 25.4428 1.576 m = −1
7 23.631 0.223 23.7008 4.103 m = −2
8 20.512 0.210 20.5014 .624 m = 0
9 29.304 0.172 29.3103 .370 m = −3
10 43.292 0.157 43.3239 1.878 m = −1
11 20.286 0.151 20.2738 .720 m = 2
12 35.718 0.149 35.6955 1.323 m = 0
13 39.597 0.149 39.5994 .141 m = 1
14 22.480 0.146 22.4569 1.362 m = 1
15 25.166 0.144 25.1881 1.299 m = 1
16 24.582 0.136 24.6427 3.572 m = 2
17 20.420 0.120 20.4281 .475 m = 2
18 22.155 0.117 22.1835 1.675 m = −2
19 17.183 0.115 17.1823 .040 m = −2
20 25.250 0.114 25.2339 .947 m = 1
21 35.877 0.113 35.8857 .511 m = 1
22 27.001 0.112 27.0063 .312 m = −2
23 25.633 0.111 25.6277 .311 m = 0
24 19.252 0.111 19.2335 1.088 m = 0
25 18.818 0.109 18.8166 .080 m = −1
26 19.936 0.109 19.9322 .225 m = 0
27 29.120 0.105 29.1296 .565 m = 0
28 20.228 0.093 20.1944 1.976 m = −1 (odd)
29 23.807 0.092 23.8031 .230 m = −1 (odd)
30 18.209 0.091 18.2238 .872 m = −2
31 31.130 0.089 31.1582 1.659 m = 2 (odd)
32 30.980 0.072 30.9649 .886 m = 0 (odd)
33 32.949 0.060 32.9469 .123 m = 1
34 34.392 0.049 34.4093 1.018 m = 0 (odd)
35 48.347 0.036 48.2973 2.925 m = 1 (odd)

allow the mode to be equatorially asymmetric. Given that α
Oph is seen nearly equator-on and the amplitude of the mode is
relatively large, this assumption seems questionable.

Based on a comparison of these frequency results with those
of Deupree (2011b), it is clear that being able to match the
observed SED in both the visual and ultraviolet plays a crucial
role in constraining the model. We would argue that models of
rapidly rotating δ Scuti stars have a reasonable chance of success
in matching observed p-mode pulsation frequencies if both
interferometry and an SED including both the ultraviolet and
the visual region are available. The interferometry is required to
identify both the shape of the model surface and the inclination,
while the SED imposes reasonable constraints on the surface
temperature distribution and equatorial radius. We note that
we do not get the shape of the model surface for stars being
seen close to pole-on. Without these three sets of observational
information, the parameter space may simply be too large to
bring about a realistic prospect of success.

The large number of computed modes shown in Figure 5
arises from the sizable number of basis functions needed to
obtain reasonably accurate computed frequencies. This large
number brings into question what good agreement with the
observed oscillation frequencies actually entails. It would be
desirable to utilize the horizontal variation of the displacements
at the model surface to argue which modes would have a higher

probability of being observed, but the computed perturbations
are not nearly as accurately determined as the oscillation
frequencies are, and may show significant variation as the
number of basis functions increases (Deupree 2011b). Including
yet more basis functions will increase the accuracy of the surface
perturbations for some of the modes, but at the expense of
adding yet more modes. It should be noted that the deviation in
latitudinal variation from that of a single Legendre polynomial
may be considerable for sufficiently rapidly rotating stars. These
deviations can be such that simple arguments about the number
of latitudinal nodes, or the effective � value, may be inadequate
as a metric for observability. It is not clear how this issue can be
resolved.

Issues remain which have not been adequately addressed and
which we may not be able to solve. The most important of
these is perhaps the internal angular momentum distribution.
It is clear that this model produced the observed ratio of
polar-to-equatorial radius with uniform rotation, leading to the
expectation that the star may not be too far from uniform
rotation, at least near the surface. This assumes that the surface
is an equipotential, something that, while not unreasonable,
remains an assumption. One would expect for a star as evolved
as α Oph that a more reasonable angular momentum distribution
would not correspond to a conservative rotation law because at
least part of the core would be rotating more quickly than the
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Figure 5. Echelle diagram for the computed and observed frequencies of α Oph. The data are denoted by circles and are vertically offset slightly for clarity. Squares
are axisymmetric modes, diamonds represent m = 1 modes, inverted triangles m = 2 modes, a triangle the sole m = 3 mode to match the highest observed frequency
mode, triangles pointing to the right m = −1, triangles pointing to the left m = −2, and asterisks for the equatorially asymmetric modes given in Table 3.

surface, even at the pole, in which case no equipotential can be
defined. It is hoped, but certainly not proven, that a study of
the low-frequency modes might provide constraints on both the
internal angular momentum distribution and the composition
profiles.

Despite these concerns, we do believe that this 2D model for
α Oph does provide us with our best estimate to date concerning
what we can and cannot expect to be able to do with oscillation
frequencies for at least moderately rapidly rotating δ Scuti stars.
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