8 research outputs found

    Diagnostics of the Tropical Tropopause Layer from in-situ observations and CCM data

    Get PDF
    A suite of diagnostics is applied to in-situ aircraft measurements and one Chemistry-Climate Model (CCM) data to characterize the vertical structure of the Tropical Tropopause Layer (TTL). The diagnostics are based on vertical tracer profiles and relative vertical tracer gradients, using tropopause-referenced coordinates, and tracer-tracer relationships in the tropical Upper Troposphere/Lower Stratosphere (UT/LS).Observations were obtained during four tropical campaigns performed from 1999 to 2006 with the research aircraft Geophysica and have been compared to the output of the ECHAM5/MESSy CCM. The model vertical resolution in the TTL (similar to 500 m) allows for appropriate comparison with high-resolution aircraft observations and the diagnostics used highlight common TTL features between the model and the observational data.The analysis of the vertical profiles of water vapour, ozone, and nitrous oxide, in both the observations and the model, shows that concentration mixing ratios exhibit a strong gradient change across the tropical tropopause, due to the role of this latter as a transport barrier and that transition between the tropospheric and stratospheric regimes occurs within a finite layer. The use of relative vertical ozone and carbon monoxide gradients, in addition to the vertical profiles, helps to highlight the region where this transition occurs and allows to give an estimate of its thickness. The analysis of the CO-O-3 and H2O-O-3 scatter plots and of the Probability Distribution Function (PDF) of the H2O-O-3 pair completes this picture as it allows to better distinguish tropospheric and stratospheric regimes that can be identified by their different chemical composition.The joint analysis and comparison of observed and modelled data allows to state that the model can represent the background TTL structure and its seasonal variability rather accurately. The model estimate of the thickness of the interface region between tropospheric and stratospheric regimes agrees well with average values inferred from observations. On the other hand, the measurements can be influenced by regional scale variability, local transport processes as well as deep convection, that can not be captured by the model

    The Impact of Precipitation and Sublimation Processes on Snow Accumulation: Preliminary Results

    Get PDF
    The need for climate change prediction has focused attention on the Surface Mass Balance (SMB) of the Antarctic continent and on how it influences the sea level. The SMB of the Antarctic plateau is governed by the equilibrium between precipitation and ablation processes such as sublimation and wind-borne snow redistribution. At scales of hundreds of kilometres snowfall variability dominates the snow accumulation process (Dery and Yau, 2002); at smaller scales, postdepositional process such as wind-borne redistribution, surface sublimation and snowdrift sublimation becomes more important. In recent years the sublimation phenomenon has received much attention from the glacial-meteorological community, and some theoretical studies have tried to model it (Bintanja, 1998; Dery & Yau, 2001b; Frezzotti, 2004). There are two different types of sublimation: surface sublimation and blowing snow sublimation. Surface sublimation is mostly determined by the continual exchange of water between the air (in the vapour phase) and the snow pack (in the solid phase) due to solar irradiance. Blowing snow sublimation is possibly the more effective of the two sublimation processes. It occurs when snow particles at the surface are blown by winds exceeding a certain threshold value. Particles suspended in the sub saturated Atmospheric Boundary Layer (ABL) sublimate at a relatively fast rate, cooling air mass transported by the wind and increasing the local atmospheric moisture content. When the first few meters of the ABL are completely saturated, the process is dumped. It takes a long time to meet this condition because katabatic winds transport saturated air masses to the coast, thereby reactivating sublimation. The role of sublimation in snow accumulation and its high variability at local scales are not fully understood due to the few available measurements in Antarctica. Further study and field experiments are required

    Tropopause and hygropause variability over the equatorial Indian Ocean during February and March 1999.

    Get PDF
    Measurements of temperature, water vapor, total water, ozone, and cloud properties were made above the western equatorial Indian Ocean in February and March 1999. The cold-point tropopause was at a mean pressure-altitude of 17 km, equivalent to a potential temperature of 380 K, and had a mean temperature of 190 K. Total water mixing ratios at the hygropause varied between 1.4 and 4.1 ppmv. The mean saturation water vapor mixing ratio at the cold point was 3.0 ppmv. This does not accurately represent the mean of the measured total water mixing ratios because the air was unsaturated at the cold point for about 40% of the measurements. As well as unsaturation at the cold point, saturation was observed above the cold point on almost 30% of the profiles. In such profiles the air was saturated with respect to water ice but was free of clouds (i.e., backscatter ratio <2) at potential temperatures more than 5 K above the tropopause and hygropause. Individual profiles show a great deal of variability in the potential temperatures of the cold point and hygropause. We attribute this to short timescale and space-scale perturbations superimposed on the seasonal cycle. There is neither a clear and consistent ā€œsettingā€ of the tropopause and hygropause to the same altitude by dehydration processes nor a clear and consistent separation of tropopause and hygropause by the Brewer-Dobson circulation. Similarly, neither the tropopause nor the hygropause provides a location where conditions consistently approach those implied by a simple ā€œtropopause freeze dryingā€ or ā€œstratospheric fountainā€ hypothesis

    The Impact of Precipitation and Sublimation Processes on Snow Accumulation: Preliminary Results

    No full text
    The need for climate change prediction has focused attention on the Surface Mass Balance (SMB) of the Antarctic continent and on how it influences the sea level. The SMB of the Antarctic plateau is governed by the equilibrium between precipitation and ablation processes such as sublimation and wind-borne snow redistribution. At scales of hundreds of kilometres snowfall variability dominates the snow accumulation process (Dery and Yau, 2002); at smaller scales, postdepositional process such as wind-borne redistribution, surface sublimation and snowdrift sublimation becomes more important. In recent years the sublimation phenomenon has received much attention from the glacial-meteorological community, and some theoretical studies have tried to model it (Bintanja, 1998; Dery & Yau, 2001b; Frezzotti, 2004). There are two different types of sublimation: surface sublimation and blowing snow sublimation. Surface sublimation is mostly determined by the continual exchange of water between the air (in the vapour phase) and the snow pack (in the solid phase) due to solar irradiance. Blowing snow sublimation is possibly the more effective of the two sublimation processes. It occurs when snow particles at the surface are blown by winds exceeding a certain threshold value. Particles suspended in the sub saturated Atmospheric Boundary Layer (ABL) sublimate at a relatively fast rate, cooling air mass transported by the wind and increasing the local atmospheric moisture content. When the first few meters of the ABL are completely saturated, the process is dumped. It takes a long time to meet this condition because katabatic winds transport saturated air masses to the coast, thereby reactivating sublimation. The role of sublimation in snow accumulation and its high variability at local scales are not fully understood due to the few available measurements in Antarctica. Further study and field experiments are required.Published47-503.8. Geofisica per l'ambienteN/A or not JCRope

    Ultrathin tropical tropopause clouds: II. Stabilisation mechanisms.

    No full text
    Mechanisms by which subvisible cirrus clouds (SVCs) might contribute to dehydration close to the tropical tropopause are not well understood. Recently Ultrathin Tropical Tropopause Clouds (UTTCs) with optical depths around 10-4 have been detected in the western Indian ocean. These clouds cover thousands of square kilometers as 200-300 m thick distinct and homogeneous layer just below the tropical tropopause. In their condensed phase UTTCs contain only 1-5% of the total water, and essentially no nitric acid. A new cloud stabilization mechanism is required to explain this small fraction of the condensed water content in the clouds and their small vertical thickness. This work suggests a mechanism, which forces the particles into a thin layer, based on upwelling of the air of some mm/s to balance the ice particles, supersaturation with respect to ice above and subsaturation below the UTTC. In situ measurements suggest that these requirements are fulfilled. The basic physical properties of this mechanism are explored by means of a single particle model. Comprehensive 1-D cloud simulations demonstrate this stabilization mechanism to be robust against rapid temperature fluctuations of +/- 0.5 K. However, rapid warming (\Delta T > 2 K) leads to evaporation of the UTTC, while rapid cooling (\Delta T < -2 K) leads to destabilization of the particles with the potential for significant dehydration below the clou

    Ultrathin tropical tropopause clouds: I. Cloud morphology and occurrence.

    No full text
    Subvisible cirrus clouds (SVCs) may contribute to dehydration close to the tropical tropopause. The higher and colder SVCs and the larger their ice crystals, the more likely they represent the last efficient point of contact of the gas phase with the ice phase and, hence, the last dehydrating step, before the air enters the stratosphere. The first simultaneous in situ and remote sensing measurements of SVCs were taken during the APE-THESEO campaign in the western Indian ocean in February/March 1999. The observed clouds, termed Ultrathin Tropical Tropopause Clouds (UTTCs), belong to the geometrically and optically thinnest large-scale clouds in the Earth's atmosphere. Individual UTTCs may exist for many hours as an only 200--300 m thick cloud layer just a few hundred meters below the tropical cold point tropopause, covering up to 105 km2. With temperatures as low as 181 K these clouds are prime representatives for defining the water mixing ratio of air entering the lower stratosphere

    Dehydration potential of ultrathin clouds at the tropical tropopause.

    Get PDF
    We report on the first simultaneous in situ and remote measurements of subvisible cirrus in the uppermost tropical troposphere. The observed cirrus, called UTTCs (ultrathin tropical tropopause clouds), are the geometrically (200ā€“300 m) and optically (Ļ„ ā‰ˆ 10āˆ’4) thinnest large-scale clouds ever sampled (ā‰ˆ105 km2). UTTCs consist of only a few ice particles per liter with mean radius ā‰ˆ5 Ī¼m, containing only 1ā€“5 % of the total water. Yet, brief adiabatic cooling events only 1ā€“2 K below mean ambient temperature destabilize UTTCs, leading to large sedimenting particles (r ā‰ˆ 25 Ī¼m). Due to their extreme altitude above 17 km and low particle number density, UTTCs may efficiently dehydrate air during its last encounter with the ice phase before entering the stratosphere
    corecore