210 research outputs found

    Measures de vent 3D avec le lidar Doppler coherent Live à bord d'un avion

    Get PDF
    International audienceA three-dimensional (3D) wind profiling Lidar, based on the latest high power 1.5 µm fiber laser development at Onera, has been successfully flown on-board a SAFIRE (Service des Avions Français Instrumentés pour la Recherche en Environnement) ATR42 aircraft. The Lidar called LIVE (LIdar VEnt) is designed to measure wind profiles from the aircraft down to ground level, with a horizontal resolution of 3 km, a vertical resolution of 100 m and a designed accuracy on each three wind vector components better than 0.5 m.s −1. To achieve the required performance, LIVE Lidar emits 410 µJ laser pulses repeating at 14 KHz with a duration of 700 ns and uses a conical scanner of 30 • total opening angle and a full scan time of 17 s.Un lidar vent 3D, basé sur le dernier développement de laser à fibre de 1,5 µm à haute puissance de l’ONERA a été testé avec succès à bord d’un avion SAFIRE ATR42. Le lidar appelé LIVE est conçu pour mesurer les profils de vent de l’avion jusqu'au sol, avec une résolution horizontale de 3 km, une résolution verticale de 100 m et une précision calculée supérieure à 0,5 m / s pour chaque composante du vecteur du vent

    Porous nanoparticles with self-adjuvanting M2e-fusion protein and recombinant hemagglutinin provide strong and broadly protective immunity against influenza virus infections

    Get PDF
    Due to the high risk of an outbreak of pandemic influenza, the development of a broadly protective universal influenza vaccine is highly warranted. The design of such a vaccine has attracted attention and much focus has been given to nanoparticle-based influenza vaccines which can be administered intranasally. This is particularly interesting since, contrary to injectable vaccines, mucosal vaccines elicit local IgA and lung resident T cell immunity, which have been found to correlate with stronger protection in experimental models of influenza virus infections. Also, studies in human volunteers have indicated that pre-existing CD4(+) T cells correlate well to increased resistance against infection. We have previously developed a fusion protein with 3 copies of the ectodomain of matrix protein 2 (M2e), which is one of the most explored conserved influenza A virus antigens for a broadly protective vaccine known today. To improve the protective ability of the self-adjuvanting fusion protein, CTA1-3M2e-DD, we incorporated it into porous maltodextrin nanoparticles (NPLs). This proof-of-principle study demonstrates that the combined vaccine vector given intranasally enhanced immune protection against a live challenge infection and reduced the risk of virus transmission between immunized and unimmunized individuals. Most importantly, immune responses to NPLs that also contained recombinant hemagglutinin (HA) were strongly enhanced in a CTA1-enzyme dependentmanner and we achieved broadly protective immunity against a lethal infection with heterosubtypic influenza virus. Immune protection wasmediated by enhanced levels of lung resident CD4(+) T cells as well as anti-HA and -M2e serum IgG and local IgA antibodies

    Inter-model comparison of global hydroxyl radical (OH) distributions and their impact on atmospheric methane over the 2000–2016 period

    Get PDF
    The modeling study presented here aims to estimate how uncertainties in global hydroxyl radical (OH) distributions, variability, and trends may contribute to resolving discrepancies between simulated and observed methane (CH4) changes since 2000. A multi-model ensemble of 14 OH fields was analyzed and aggregated into 64 scenarios to force the offline atmospheric chemistry transport model LMDz (Laboratoire de Meteorologie Dynamique) with a standard CH4 emission scenario over the period 2000–2016. The multi-model simulated global volume-weighted tropospheric mean OH concentration ([OH]) averaged over 2000–2010 ranges between 8:7*10^5 and 12:8*10^5 molec cm-3. The inter-model differences in tropospheric OH burden and vertical distributions are mainly determined by the differences in the nitrogen oxide (NO) distributions, while the spatial discrepancies between OH fields are mostly due to differences in natural emissions and volatile organic compound (VOC) chemistry. From 2000 to 2010, most simulated OH fields show an increase of 0.1–0:3*10^5 molec cm-3 in the tropospheric mean [OH], with year-to-year variations much smaller than during the historical period 1960–2000. Once ingested into the LMDz model, these OH changes translated into a 5 to 15 ppbv reduction in the CH4 mixing ratio in 2010, which represents 7%–20% of the model-simulated CH4 increase due to surface emissions. Between 2010 and 2016, the ensemble of simulations showed that OH changes could lead to a CH4 mixing ratio uncertainty of > 30 ppbv. Over the full 2000–2016 time period, using a common stateof- the-art but nonoptimized emission scenario, the impact of [OH] changes tested here can explain up to 54% of the gap between model simulations and observations. This result emphasizes the importance of better representing OH abundance and variations in CH4 forward simulations and emission optimizations performed by atmospheric inversions

    S-acylation controls SARS-CoV-2 membrane lipid organization and enhances infectivity

    Get PDF
    SARS-CoV-2 virions are surrounded by a lipid bilayer that contains membrane proteins such as spike, responsible for target-cell binding and virus fusion. We found that during SARS-CoV-2 infection, spike becomes lipid modified, through the sequential action of the S-acyltransferases ZDHHC20 and 9. Particularly striking is the rapid acylation of spike on 10 cytosolic cysteines within the ER and Golgi. Using a combination of computational, lipidomics, and biochemical approaches, we show that this massive lipidation controls spike biogenesis and degradation, and drives the formation of localized ordered cholesterol and sphingolipid-rich lipid nanodomains in the early Golgi, where viral budding occurs. Finally, S-acylation of spike allows the formation of viruses with enhanced fusion capacity. Our study points toward S-acylating enzymes an

    Which Anesthesia Regimen Is Best to Reduce Morbidity and Mortality in Lung Surgery? A Multicenter Randomized Controlled Trial.

    Get PDF
    BACKGROUND One-lung ventilation during thoracic surgery is associated with hypoxia-reoxygenation injury in the deflated and subsequently reventilated lung. Numerous studies have reported volatile anesthesia-induced attenuation of inflammatory responses in such scenarios. If the effect also extends to clinical outcome is yet undetermined. We hypothesized that volatile anesthesia is superior to intravenous anesthesia regarding postoperative complications. METHODS Five centers in Switzerland participated in the randomized controlled trial. Patients scheduled for lung surgery with one-lung ventilation were randomly assigned to one of two parallel arms to receive either propofol or desflurane as general anesthetic. Patients and surgeons were blinded to group allocation. Time to occurrence of the first major complication according to the Clavien-Dindo score was defined as primary (during hospitalization) or secondary (6-month follow-up) endpoint. Cox regression models were used with adjustment for prestratification variables and age. RESULTS Of 767 screened patients, 460 were randomized and analyzed (n = 230 for each arm). Demographics, disease and intraoperative characteristics were comparable in both groups. Incidence of major complications during hospitalization was 16.5% in the propofol and 13.0% in the desflurane groups (hazard ratio for desflurane vs. propofol, 0.75; 95% CI, 0.46 to 1.22; P = 0.24). Incidence of major complications within 6 months from surgery was 40.4% in the propofol and 39.6% in the desflurane groups (hazard ratio for desflurane vs. propofol, 0.95; 95% CI, 0.71 to 1.28; P = 0.71). CONCLUSIONS This is the first multicenter randomized controlled trial addressing the effect of volatile versus intravenous anesthetics on major complications after lung surgery. No difference between the two anesthesia regimens was evident

    What's in a name : name suppression and the need for public interest

    Get PDF
    OBJECTIVES: Following two studies conducted in 2005 and 2011, a third prevalence survey of multidrug-resistant microorganisms (MDRO) was organised in Belgian nursing homes (NHs) using a similar methodology. The aim was to measure the prevalence of carriage of methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), extended-spectrum β-lactamase producing Enterobacteriaceae (ESBLE) and carbapenemase-producing Enterobacteriaceae (CPE) in NH residents. Risk factors for MDRO carriage were also explored. METHODS: Up to 51 randomly selected residents per NH were screened for MDRO carriage by trained local nurses between June and October 2015. Rectal swabs were cultured for ESBLE, CPE and VRE, while pooled samples of nose, throat and perineum and chronic wound swabs were obtained for culture of MRSA. Antimicrobial susceptibility testing, molecular detection of resistance genes and strain genotyping were performed. Significant risk factors for MDRO colonization MDRO was determined by univariate and multivariable analysis. RESULTS: Overall, 1447 residents from 29 NHs were enrolled. The mean weighted prevalence of ESBLE and MRSA colonization was 11.3% and 9.0%, respectively. Co-colonization occurred in 1.8% of the residents. VRE and CPE carriage were identified in only one resident each. Impaired mobility and recent treatment with fluoroquinolones or with combinations of sulphonamides and trimethoprim were identified as risk factors for ESBLE carriage, while for MRSA these were previous MRSA carriage/infection, a stay in several different hospital wards during the past year, and a recent treatment with nitrofuran derivatives. Current antacid use was a predictor for both ESBL and MRSA carriage. CONCLUSIONS: In line with the evolution of MRSA and ESBL colonization/infection in hospitals, a decline in MRSA carriage and an increase in ESBLE prevalence was seen in Belgian NHs between 2005 and 2015. These results show that a systemic approach, including surveillance and enhancement of infection control and antimicrobial stewardship programs is needed in both acute and chronic care facilities

    Prognostic factors associated with mortality risk and disease progression in 639 critically ill patients with COVID-19 in Europe: Initial report of the international RISC-19-ICU prospective observational cohort

    Get PDF
    corecore