2,545 research outputs found
Guidelines for morpholino use in zebrafish
The zebrafish (Danio rerio) has emerged as a powerful model to study vertebrate development and disease. Its short generation time makes it amenable to genetic manipulation and analysis, and its small size and high fecundity make it especially well suited for large-scale forward genetic and chemical screens. Fast-developing zebrafish embryos are transparent, facilitating live imaging of a variety of developmental processes in wild-type and mutant animals. ...
This brief document provides an updated set of guidelines regarding morpholino use in zebrafish that we anticipate will be of value for experimentalists as well as journal and grant reviewers, and decision makers
On the surprising effectiveness of a simple matrix exponential derivative approximation, with application to global SARS-CoV-2
The continuous-time Markov chain (CTMC) is the mathematical workhorse of
evolutionary biology. Learning CTMC model parameters using modern,
gradient-based methods requires the derivative of the matrix exponential
evaluated at the CTMC's infinitesimal generator (rate) matrix. Motivated by the
derivative's extreme computational complexity as a function of state space
cardinality, recent work demonstrates the surprising effectiveness of a naive,
first-order approximation for a host of problems in computational biology. In
response to this empirical success, we obtain rigorous deterministic and
probabilistic bounds for the error accrued by the naive approximation and
establish a "blessing of dimensionality" result that is universal for a large
class of rate matrices with random entries. Finally, we apply the first-order
approximation within surrogate-trajectory Hamiltonian Monte Carlo for the
analysis of the early spread of SARS-CoV-2 across 44 geographic regions that
comprise a state space of unprecedented dimensionality for unstructured
(flexible) CTMC models within evolutionary biology
HiPose: Hierarchical Binary Surface Encoding and Correspondence Pruning for RGB-D 6DoF Object Pose Estimation
In this work, we present a novel dense-correspondence method for 6DoF object
pose estimation from a single RGB-D image. While many existing data-driven
methods achieve impressive performance, they tend to be time-consuming due to
their reliance on rendering-based refinement approaches. To circumvent this
limitation, we present HiPose, which establishes 3D-3D correspondences in a
coarse-to-fine manner with a hierarchical binary surface encoding. Unlike
previous dense-correspondence methods, we estimate the correspondence surface
by employing point-to-surface matching and iteratively constricting the surface
until it becomes a correspondence point while gradually removing outliers.
Extensive experiments on public benchmarks LM-O, YCB-V, and T-Less demonstrate
that our method surpasses all refinement-free methods and is even on par with
expensive refinement-based approaches. Crucially, our approach is
computationally efficient and enables real-time critical applications with high
accuracy requirements.Comment: CVPR 202
Rossiter-McLaughlin Observations of 55 Cnc e
We present Rossiter-McLaughlin observations of the transiting super-Earth 55
Cnc e collected during six transit events between January 2012 and November
2013 with HARPS and HARPS-N. We detect no radial-velocity signal above 35 cm/s
(3-sigma) and confine the stellar v sin i to 0.2 +/- 0.5 km/s. The star appears
to be a very slow rotator, producing a very low amplitude Rossiter-McLaughlin
effect. Given such a low amplitude, the Rossiter-McLaughlin effect of 55 Cnc e
is undetected in our data, and any spin-orbit angle of the system remains
possible. We also performed Doppler tomography and reach a similar conclusion.
Our results offer a glimpse of the capacity of future instrumentation to study
low amplitude Rossiter-McLaughlin effects produced by super-Earths.Comment: Accepted for publication in ApJ Letter
Radial glia regulate vascular patterning around the developing spinal cord
Vascular networks surrounding individual organs are important for their development, maintenance, and function; however, how these networks are assembled remains poorly understood. Here we show that CNS progenitors, referred to as radial glia, modulate vascular patterning around the spinal cord by acting as negative regulators. We found that radial glia ablation in zebrafish embryos leads to excessive sprouting of the trunk vessels around the spinal cord, and exclusively those of venous identity. Mechanistically, we determined that radial glia control this process via the Vegf decoy receptor sFlt1: sflt1 mutants exhibit the venous over-sprouting observed in radial glia-ablated larvae, and sFlt1 overexpression rescues it. Genetic mosaic analyses show that sFlt1 function in trunk endothelial cells can limit their over-sprouting. Together, our findings identify CNS-resident progenitors as critical angiogenic regulators that determine the precise patterning of the vasculature around the spinal cord, providing novel insights into vascular network formation around developing organs
Inter-model comparison of global hydroxyl radical (OH) distributions and their impact on atmospheric methane over the 2000–2016 period
The modeling study presented here aims to estimate
how uncertainties in global hydroxyl radical (OH) distributions, variability, and trends may contribute to resolving discrepancies between simulated and observed methane (CH4) changes since 2000. A multi-model ensemble of 14 OH fields was analyzed and aggregated into 64 scenarios
to force the offline atmospheric chemistry transport model
LMDz (Laboratoire de Meteorologie Dynamique) with a
standard CH4 emission scenario over the period 2000–2016.
The multi-model simulated global volume-weighted tropospheric mean OH concentration ([OH]) averaged over 2000–2010 ranges between 8:7*10^5 and 12:8*10^5 molec cm-3.
The inter-model differences in tropospheric OH burden and
vertical distributions are mainly determined by the differences in the nitrogen oxide (NO) distributions, while the spatial discrepancies between OH fields are mostly due to differences in natural emissions and volatile organic compound (VOC) chemistry. From 2000 to 2010, most simulated OH fields show an increase of 0.1–0:3*10^5 molec cm-3 in the tropospheric mean [OH], with year-to-year variations much smaller than during the historical period 1960–2000. Once
ingested into the LMDz model, these OH changes translated
into a 5 to 15 ppbv reduction in the CH4 mixing ratio
in 2010, which represents 7%–20% of the model-simulated
CH4 increase due to surface emissions. Between 2010 and
2016, the ensemble of simulations showed that OH changes
could lead to a CH4 mixing ratio uncertainty of > 30 ppbv.
Over the full 2000–2016 time period, using a common stateof-
the-art but nonoptimized emission scenario, the impact
of [OH] changes tested here can explain up to 54% of the
gap between model simulations and observations. This result
emphasizes the importance of better representing OH abundance and variations in CH4 forward simulations and emission optimizations performed by atmospheric inversions
A Study of the Diverse T Dwarf Population Revealed by WISE
We report the discovery of 87 new T dwarfs uncovered with the Wide-field
Infrared Survey Explorer (WISE) and three brown dwarfs with extremely red
near-infrared colors that exhibit characteristics of both L and T dwarfs. Two
of the new T dwarfs are likely binaries with L7+/-1 primaries and mid-type T
secondaries. In addition, our follow-up program has confirmed 10 previously
identified T dwarfs and four photometrically-selected L and T dwarf candidates
in the literature. This sample, along with the previous WISE discoveries,
triples the number of known brown dwarfs with spectral types later than T5.
Using the WISE All-Sky Source Catalog we present updated color-color and
color-type diagrams for all the WISE-discovered T and Y dwarfs. Near-infrared
spectra of the new discoveries are presented, along with spectral
classifications. To accommodate later T dwarfs we have modified the integrated
flux method of determining spectral indices to instead use the median flux.
Furthermore, a newly defined J-narrow index differentiates the early-type Y
dwarfs from late-type T dwarfs based on the J-band continuum slope. The K/J
indices for this expanded sample show that 32% of late-type T dwarfs have
suppressed K-band flux and are blue relative to the spectral standards, while
only 11% are redder than the standards. Comparison of the Y/J and K/J index to
models suggests diverse atmospheric conditions and supports the possible
re-emergence of clouds after the L/T transition. We also discuss peculiar brown
dwarfs and candidates that were found not to be substellar, including two Young
Stellar Objects and two Active Galactic Nuclei. The coolest WISE-discovered
brown dwarfs are the closest of their type and will remain the only sample of
their kind for many years to come.Comment: Accepted to ApJS on 15 January 2013; 99 pages in preprint format, 30
figures, 12 table
- …